
1. Getting acquainted
2. Basic demos
3. Setup commands
4. CGI services available through CGIDEV2 service program
5. CGI debugging tips
6. Error number meanings
7. Performance tips
8. About persistent CGI
9. ZIP and UNZIP commands

1. Getting acquainted

If you are not yet familiar with CGI programming and with CGIDEV2 service program, please read
the following:

Benefits of CGIDEV2 Service program
Giovanni's flyer on CGI
Giovanni's editorial on CGI

2. Basic Demos

Our demos are the best way to learn in practice how to develop RPG-ILE CCGI programs. After
reading about CGIDEV2 service program functions, we recommend you visit them.

3. Set up commands

You should not develop your CGI's in one of the libraries (e.g. CGIDEV2) downloaded from our site.
Installing a refresh would delete your developments.
You should instead develop your CGI's in your (source and object) libraries. The problem of copying
all the pieces needed for development and for execution of your CGI's is solved through some
commands. We have commands to easy your setups:

cgidev2/setcgilib to set up your source and production libraries for CGI development
cgidev2/crtcgisrc to create a running example of CGI source.

Then we have prepared for you some ILE-RPG source members that you may include in your
sources, thus saving coding time.

4. CGI services available through CGIDEV2 service program

For a comprehensive walk through all the features of CGIDEV2 service program, you may go to Mel
Rothman's Readme page.

We recommend however you go through the following scheme, which provides you with a smooth
learning path:

1 of 4 14/09/2011 00:21

CGIDEV2 Tutorial page 1

http://www.easy400.net/cgidev2o/demos.htm
http://www.easy400.net/cgidev2h/readme.htm
http://www.easy400.net/cgidev2o/benefits.htm
http://www.easy400.net/easy400/flyeren.pdf
http://www.easy400.net/cgidev2o/jpart.htm

Main functions

Read input from client browser
Map input string into program variables
Multiple occurrences of an input variable
Use an externally defined HTML script
to write HTML output

Other functions

Handling cookies
Message handling
Maintain and retrieve page counts
Retrieve environment variables
Other environment variables functions
Timing functions
IFS subprocedures
Uploading PC files
CGI debug file
Debugging functions

Coding facilities

Data conversion functions
Execute a command
Override a database file

Dynastatic pages

Write HTML to a stream file

Program state support

Using user spaces
Create a random string

Persistent CGI support

Get a random integer
Assign a Session ID ("handle")

5. CGI debugging tips

Though debugging always comes last in a tutorial, it should rank first in a programmer's interest. This
is why we dedicate a separate page to this topic.

6. Error number values

In some circumstances some subprocedures of the service programs may end with non-zero return
codes. Usually such error codes are also reported in the CGIDEBUG file. The guess would be about
the meaning of such codes. To find out about them:

Go to the following page of the iSeries Information Center: Errno Values for UNIX-Type
Functions.

2 of 4 14/09/2011 00:21

CGIDEV2 Tutorial page 2

http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Fapis%2Funix14.htm
http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=%2Fapis%2Funix14.htm

7. Performance tips

In order to obtain the best performance from your CGI's, you may want to adopt the following tips:

use a named activation group (a different activation group for each CGI, see FAQ number 26)1.
return without setting LR on

Note. By returning with LR set to *off provides you with another great performance
advantage. The next time the program is called and tries to reload the external HTML,
the service program will find that the HTML is still in core, and will skip its loading, thus
saving some relevant amount of time.

2.

open files just the first time through, never close them3.
each time the program runs

re-initialize variables
do not rely on files being positioned on the first record; reposition with SETLL, or
SETGT, or any other appropriate way

4.

After programs are thoroughly tested, use CALLP SetNoDebug(*ON) to turn all debugging
off.

Note.SetNoDebug sets a global variable in the service program. If multiple CGI
programs are running in the same named activation group, all those programs are
affected in the same way by the most recent execution of SetNoDebug.

5.

8. About persistent CGI

So far, without mentioning them, we have being talking about non persistent CGI. Traditionally, CGI
programs are not persistent, that is, a CGI program, the next time it is called, does not remember (or,
better, must not remember - as no guarantee exists that it is called by the same client as before)
what values where left in its variables, and where files are positioned. This fact of course has a
relevant impact in program design, because the values of the variables which are important for a
program at the time it is invoked must be saved in the previous response HTML (usually as hidden
fields) and sent with the program invocation request.

Since V4R3, however, persistent CGI have been implemented for OS/400 HTTP.
A persistent CGI returns without raising LR, that is, the next time it is called, it finds its status as it
was left.
The obvious problem with persistent CGI, is that for a given program there are potentially several
copies waiting to be called back, and each copy is related to a different user. You would not like to
have such responsibilities be randomly mixed up. To solve this problem, it is a program responsibility
to give a "ticket" (technically speaking, a "handle") to each next program invocation.
The next problem is that a persistent CGI cannot wait forever to be called back. An HTTP controlled
timeout will kill any persistent CGI session waiting over a given number of seconds. At this point, the
user may need to re-start his transaction cycle from the beginning.

Because of this second problem, the implementation of persistent CGI is not very frequent and left to
cases where a COMMIT technique is mandatory.

Our recommendation is not to use persistent CGI, unless strictly necessary. Persistent CGI

do not perform faster than non-persistent CGI
require much more skill and testing
may not provide a user-friendly solution

However, should you like to know more on this subject, this is your page.

9. ZIP and UNZIP commands

Library CGIDEV2 includes commands ZIP and UNZIP.
These commands allow to compress and decompress IFS stream files using standard .zip files.
The requests entered from commands ZIP and UNZIP are transformed to QSHELL commands, that

3 of 4 14/09/2011 00:21

CGIDEV2 Tutorial page 3

http://www.easy400.net/cgidev2o/faq26.htm

are run in batch mode.
Results from ZIP and UNZIP commands can optionally be displayed.

4 of 4 14/09/2011 00:21

CGIDEV2 Tutorial page 4

There are three ways a remote client browser may send input to a CGI program:

From an HTML form. As an example:
html which shows as

<form method="post" action="/cgidev2p/hello1.pgm">
Your first name:
<input type="text" name="firstname"
 size="10" maxlength="30">

Your last name:
<input type="text" name="lastname"
 size="10" maxlength="30">

<center>
<input type="submit" value="Send">
</center>
</form>

Your first name:
Your last name:

In this case, when the remote user, after entering data in the two input fields, presses the
Send button, the string sent to program hello1 is:
 firstname=George&lastname=Brown
where George and Brown are the values entered into the two input fields of the form.

1.

From an anchor tag (<a>...) in an HTML script. As an example, the following anchor

Say
hello to George Brown

will send the same string to program hello1.

2.

From the command line (location line) of the browser.
For instance, if in this line one types

http://.../cgidev2/hello1.pgm?firstname=George&lastname=Brown

the same string will be sent to program hello1.

3.

There are two ways an input string may be sent to a CGI program.

1 of 3 13/09/2011 23:45

CGIDEV2 Tutorial page 5

With the GET method.
This is implicitly done when the sending is performed either through an anchor tag (<a> href=...) or
through the browser command line.
The GET method may also be used in a form tag. This is usually done for test purposes.
In fact, when using the GET method, the input string is always visible in the browser command line.
The GET method has some restrictions, which do not exist for the POST method:

The input string (containing parameters after character "?"; usually called query string) has a maximum
length of about 3 thousand characters. The maximum length depends on the type of browser.

i.

The values of the parameters can just be alphanumeric strings: no special characters, no inbedded
spaces. Special characters and inbedded spaces must be replaced by URL escaped sequences.

ii.

1.

With the POST method.
This is commonly done in a form tag.
In fact, when using the POST method, the input string is not visible to the end user.

2.

Though these two methods have implications on the way a CGI should retrieve its input string, Mel Rothman's service
program provides procedures which would take care to retrieve the input string whichever way it was sent.
Therefore your CGI programs are not sensitive to the method used by the remote browser.

In order to acquire the input buffer sent from the browser, your CGI program must use the zhbGetInput
subprocedure

ZhbGetInput uses the server's QzhbCgiParse API to get the browser's input and places it into a set of internal,
dynamically allocated arrays for subsequent high performance use by the ZhbGetVarCnt, ZhbGetVar, ZhbGetVarUpper
input variable parsing procedures.

Warning. For the QzhbCgiParse API to work properly, the CGIConvMode must contain value %%EBCDIC/EBCDIC%%
(not the value %%MIXED/MIXED%%). If that does not happen, ZhbGetInput writes an error message into the debugging
file and allows the program to continue until it fails.
To use the zhbGetInput correctly you must add the following Apache HTTP directive:

CGIConvMode %%EBCDIC/EBCDIC%%

This is how you can use the ZhbGetInput subprocedure in your CGI program:

 * Prototype definitions and standard system API error structure
 /copy CGIDEV2/qrpglesrc,prototypeb
 /copy CGIDEV2/qrpglesrc,usec
 * Number of variables
DnbrVars s 10i 0
 *
 * Saved query string
Dsavedquerystring...
D s 32767 varying
 *
 ... etc. ...
 * Get the input buffer sent from the browser
C eval nbrVars =
C zhbGetInput(savedquerystring:qusec)

or you can use the following code:

 * Prototype definitions and standard system API error structure
 /copy CGIDEV2/qrpglesrc,prototypeb
 /copy CGIDEV2/qrpglesrc,usec
 * Predefined variables
 /copy CGIDEV2/qrpglesrc,variables3
 ... etc. ...
 * Get the input buffer sent from the browser
 /copy CGIDEV2/qrpglesrc,prolog3

For a live example, please see the source of the template3 program.

2 of 3 13/09/2011 23:45

CGIDEV2 Tutorial page 6

http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp03=template3&cgiinp02=qrpglesrc&cgiinp01=cgidev2

Sample input string:
 cgiinp01=George&cgiinp02=Brown

Once a CGI has read the input string sent from the remote browser, it must understand what the
request is. To do this there must be some routine that scans the input (query) string for all the
possible keywords and saves their values into program variables, so that the program may then test
them and process the user request. This scan_and_break operation is commonly referrred to as
"parsing".

The following parsing subprocedures are available:

"zhbGetVar" parsing procedure1.
"zhbGetVarptr" parsing procedure2.
Other zhbGet... subprocedures3.
Receiving names of input variables4.

Parsing procedure zhbgetvar lets you retrieve fields from the input string one at a time into program-
defined fields.
If you want to uppercase a field while retrieving it from the input string, you may use the parsing
procedure zhbgetvarupper.
If you want to lowercase a field while retrieving it from the input string, you may use the parsing
procedure zhbgetvarlower.

This is how you can use the zhbGetVar subprocedure in your CGI program:

 * Prototype definitions and standard system API error structure
 /copy CGIDEV2/qrpglesrc,prototypeb
 /copy CGIDEV2/qrpglesrc,usec
 * Number of variables
DnbrVars s 10i 0
 *
 * Saved query string
Dsavedquerystring...
D s 32767 varying
 *
 * Client input variables
D custname s 40
D emailadd s 40
D state s 2
 ... etc. ...
 * Get input
C eval nbrVars =
C zhbgetinput(savedquerystring:qusec)
 * Parse variables from QUERY_STRING environment variable:
 * Customer name
C eval custname = zhbgetvar('custname')
 * E-mail address
C eval emailadd = zhbgetvar('emailadd')

1 of 3 13/09/2011 23:35

CGIDEV2 Tutorial page 7

 * State
C eval state = zhbgetvar('state')

For a complete example see the source of program TEMPLATE3.

Parsing procedure zhbgetvarptr returns a pointer to an input variable. This is useful when an input
variable's length might exceed ZhbGetVar's maximum size of 32767.
The maximum length of such a variable is 64000.
If the input variable is not found or length is 0, returns *null .

This is how you can use the zhbGetVarPtr subprocedure in your CGI program:

 * Prototype definitions and standard system API error structure
 /copy CGIDEV2/qrpglesrc,prototypeb
 /copy CGIDEV2/qrpglesrc,usec
 * Number of variables
DnbrVars s 10i 0
 *
 * Saved query string
Dsavedquerystring...
D s 32767 varying
 *
 * Pointer returned from zhbGetVarPtr
D ReturnVarP s *
 * Variables for zhbGetVarPtr
D varnamein s 50
D occurrence s 10i 0
D varLenOut s 10i 0
 ... etc. ...
 * Get input
C eval nbrVars =
C zhbgetinput(savedquerystring:qusec)
 * Retrieve the pointer to input variable named 'longstring':
C eval occurrence = 1
C eval ReturnVarP = zhbGetVarPtr('longstring':
C occurrence:
C varLenOut)

Note. Do not use this subprocedure for reading a file being uploaded from the browser. See
Uploading PC files.

ZhbCountAllVars: returns the number of occurrences of all variables in the input string
(ZhbGetInput must have been run before calling this subprocedure)
ZhbGetVarDetails: returns the following information on the user-specified nth input variable
(out of those counted with ZhbCountAllVars): variable name, variable occurrence number,
indicator (char 0/1) whether variable was found.

D nbrInpVars s 10i 0
D ThisVarVal s 1000a
D ThisOccur s 10i 0
D ThisVarName s 50
D ThisVarOccur s 10i 0
D FoundInd s n
 * Get input
C eval nbrVars =
C zhbgetinput(savedquerystring:qusec)

2 of 3 13/09/2011 23:35

CGIDEV2 Tutorial page 8

 * Example of retrieving
 * the number of occurrences of all variables in the CGI input
C eval nbrInpVars = ZhbCountAllVars
 * Example of retrieving
 * detailed information for all the input variables
C if nbrInpVars > 0
C 1 do nbrInpVars ThisOccur
C eval ThisVarVal =
C ZhbGetVarDetails(ThisOccur:
C ThisVarName:
C ThisVarOccur:
C FoundInd)
C enddo
C endif

There may be cases where the CGI program cannot predict the names of the input variables, and
must find out what they are.
Such cases can be easily solved by using, in sequence, the following subprocedures:

ZhbGetInputa.
ZhbCountAllVarsb.
ZhbGetVarDetailsc.

3 of 3 13/09/2011 23:35

CGIDEV2 Tutorial page 9

What is a multiple input variable from the browser

Suppose that a CGI expects to receive from the browser an input string like the following

itemno=00727&qty=1&itemno=00932&qty=7&itemno=01858&qty=15

That could be an order of three items, each with a different quantity.
In other words, the CGI receives multiple occurrences of input variables imtemno and qty.

CGIDEV2 service program provides the following procedures:

ZhbGetVarCnt returns the number of multiple occurrences of a given input field
ZhbGetVar returns the value of one of the multiple occurrences of a given input field
ZhbGetVarUpper returns the value of one of the multiple occurrences of a given input field in
uppercase characters

Example:

 * Prototype definitions and standard system API error structure
 /copy CGIDEV2/qrpglesrc,prototypeb
 /copy CGIDEV2/qrpglesrc,usec
 * Number of variables
DnbrVars s 10i 0
 * Saved query string
Dsavedquerystring...
D s 32767 varying
 * Return code
D rc s 10i 0 inz(0)
 * Variables for retrieving multiple occurrencies of "itemno" and "qty"
D itemcount s 10i 0
D varocc s 10i 0
 *
D itemno s 5a
D qty s 3a
 * ... etc. ...
 * Get input
C eval nbrVars =
C zhbgetinput(savedquerystring:qusec)
 * Example of multiple occurences
C eval itemcount = ZhbGetVarCnt('itemno')
C IF itemcount > 0
C 1 do itemcount varocc
C eval itemno = ZhbGetVar('itemno':varocc)
C eval qty = ZhbGetVar('qty':varocc)
C exsr ProcessItem
C enddo
C ENDIF

1 of 2 14/09/2011 08:59

CGIDEV2 Tutorial page 10

These procedures are able to process an unlimited number of occurrences of the same input variable.

For an example of retrieving multiple occurrences of an input variable, please check out program
boatsch2 in the YachtWorld demo.

2 of 2 14/09/2011 08:59

CGIDEV2 Tutorial page 11

http://www.easy400.net/cgidev2o/about.htm#BOATSCH2
http://www.easy400.net/cgidev2p/boatsch0.pgm

"The same power and flexibility as an
externally defined Display File!"

To provide an answer from your program to the web user, your program should send out an HTML
string.

In a RPG program, without using Mel's service program, you should prepare your html string and
write it out using the Write to Stdout (QtmhWrStout) API. Preparing such a string in a program,
while not easy, suffers of unflexibility. Any time you want to change something in the output HTML
(texts, fonts, alignments, href, gifs, etc.), you must change your program.

In a normal AS/400 program you would have greater flexibility just using an externally defined display
file.

Mel's service program provides a technique as flexible as DDS, but even simpler to use.
This technique is called

Externally defined HTML

There are two ways you can develop external HTML

using a source physical file1.
using IFS stream files2.

1. Using a source physical file

This is how you implement it (it takes more to tell than to use it):

Create a source physical file named HTMLSRC (record format name MUST be HTMLSRC)
with record length 240 (MUST not be more than 240). You may then rename this source
physical file, if you want; its record format would still be HTMLSRC.
Note 1. A file HTMLSRC is automatically created in your object (production) library when you
use command setcgilib.

1.

Add a member named as you like (we recommend to specify HTML for the SEU type).2.
Divide your source into sections.

In a sense, a section is the same as a record format in a display file.
A section is a single piece of html your program will output under given conditions.
Examples of sections could be

starting html, starting body, defining title and headers
a table start
a table row
a table end
body and html end

A section is identified by a source record containing
/$section_name starting in column 1, where section_name can be up to 20
characters (prefix /$ is the standard one for section identification; however, the
developer may define other prefixes).
/$top, for instance, identifies the beginning of section top.

The section which is issued as first must start as follow
/$section_name

3.

1 of 3 14/09/2011 10:22

CGIDEV2 Tutorial page 12

perotti
Typewritten Text

Content-type: text/html

<html>

Please pay attention to the blank line just before the one containing <HTML>. If
you miss it, the client browser may not interpret your html!

HTML texts in your sections may contain variables. A trivial case is that of a table row (subfile line)
with table definitions <TD> (subfile line fields) containing variables, such as item and price

You specify a variable in your html text by using the following syntax
 /%variable_name%/
where variable_name can be up to 30 non-case sensitive characters. Delimiters /% and %/
are the standard ones. However, the developer may decide to use his own delimiters.
There is no naming convention for variables. For instance, they do not need to have the same
name of their corresponding database fields, though if you do so you may improve
understanding of your programs.

Your CGI program will

Read the external html source member into memory using Mel's service program subprocedure
gethtml.

1.

Fill the html /%variables%/ (which are character fields in your RPG) from e.g. database
records fields using updhtmlvar subprocedure.

2.

Call subprocedure wrtsection to output html sections.3.

Section and variable delimiters

Section name delimiters.
A section is identified by the following sequence starting in column 1 of a dedicated line:
xxxsection_nameyyy
where

xxx is the section name starting delimiter (10 char max) that you would mention in the
RPG program when calling subprocedure gethtml.
The default section name starting delimiter is /$. This default section name starting
delimiter may be omitted when calling subprocedure gethtml.
section_name is the name of the section (mandatory) that you would mention when
calling subprocedure wrtsection. Section name must be an alphanumeric string up to
20 characters.
yyy is the section name ending delimiter (optional, 10 char max). If specified, you must
mention it in the RPG program when calling subprocedure gethtml.

Notes on section name delimiters
Default section name starting delimiter /$ may cause problems when the external
HTML is on the IFS. This is because character $ may not be correctly converted for the
CGISRVPGM2 service program.

1.

We suggest you use the following:
"<! -- Sec_" as section name starting delimiter
" -->" as section name ending delimiter
Example:
<! -- Sec_top -->
for section top.
This approach defines the HTML section as a comment and is therefore transparent to
the HTML editors.

2.

1.

Variable name delimiters
The default delimiters for a variable name are
 /% and %/
User-defined delimiters can also be used, provided thay do not exceed 10 characters.
Non-default variable delimiters must be specified as parameters to the gethtml
subprocedure.

2.

The following restrictions apply:

2 of 3 14/09/2011 10:22

CGIDEV2 Tutorial page 13

Description Maximum

Source record length 240 bytes (228 bytes
for source data)

Number of records 32,764
Number of unique substitution variables (each
may appear multiple times in the source) 16,221

Number of occurrences of substitution
variables in the source file member 32,767

Substitution variable name length 30 characters
Substitution variable value 1,000 characters
Substitution variables' delimiters length 10 characters
Number of sections 200
Section name length 20 characters
Section name delimiters' length 10 characters

2. Using IFS stream files

Instead of writing the external HTML in members of a source physical file, you could decide to create
PC files (stream files) in one or more directories of the OS/400 Integrated File System (IFS). This
approach may have some advantages:

the restriction of 228 characters per line no longer applies (the other restrictions stay the
same)

1.

it would be possible design external HTML scripts using HTML authoring tools, such as
Microsoft Front Page, IBM Websphere Studio, or other.

2.

Performance would be the same as for members of a physical file.

Directories containing externally defined HTML:

do not require any HTTP directive to be accessed
for performance reasons, it is recommended to store the external HTML files in directories
different from the ones accessed from the HTTP server (such as the directories containing
static HTML pages and/or images).

Giovanni's html skeleton member using default section name delimiters1.
Mel's html skeleton member using user-defined section name delimiters2.

3 of 3 14/09/2011 10:22

CGIDEV2 Tutorial page 14

http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp02=demohtml&cgiinp03=exercise&cgiinp01=cgidev2
http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp02=htmlsrc&cgiinp03=talk2&cgiinp01=cgidev2

This page shows how to

define the variables needed for these operations1.
read into memory an externally defined html script2.
assign values to variables of this external html3.
write html sections and send the output buffer4.
use special output procedures5.

1. Variables

We recommend you use

command cgidev2/setcgilib to setup the development and execution environments in your source
library and object (production) library

1.

command cgidev2/crtcgisrc to create a sample source for a new CGI program. You can compile an
run such program.

2.

If you do so, you'll find out that the variables are already defined by copying in other source members:

/copy mysrclib/qrpglesrc,hspecs
/copy mysrclib/qrpglesrc,hspecsbnd
 ... etc. ...
/copy mysrclib/qrpglesrc,prototypeb
/copy mysrclib/qrpglesrc,usec
/copy mysrclib/qrpglesrc,variables3
 ... etc. ...

2. Read skeleton html member into memory

Use subprocedure

getHtml to load into memory a single externally defined html source member
getHtmlifs to load into memory a single externally defined html IFS (stream) file
getHtmlifsMult to load into memory in one shot multiple externally defined html IFS (stream)
files

Examples for default section and variables delimiters

section name start delimiter: /$
variable name start delimiter: /%
variable name end delimiter: %/

1) getHtmlxxx

1 of 7 14/09/2011 11:08

CGIDEV2 Tutorial page 15

C eval HtmlSrcLib = 'CGIDEV2'
C eval HtmlSrcFil = 'DEMOHTML'
C eval HtmlSrcMbr = 'EXERCISE'
C callp gethtml(HtmlSrcFil:HtmlSrcLib:HtmlSrcMbr)

C callp gethtml('DEMOHTML':'CGIDEV2':'EXERCISE')

2) getHtmlifs

C callp gethtmlifs('/CgidevExtHtml/talk2ifs.html')

See the example in CGI TEMPLATE4.
Note that the directory to be specified as a parameter of the gethtmlifs procedure is the real directory
path, not the alias mentioned in a HTTP pass directive.
The recommendation is -in any case- not to use for the IFS html code directories accessed also by the
HTTP server.

3) getHtmlifsMult
This subprocedures allows to load into memory multiple externally defined html files. All the sections and
records in all the files are read into dynamic storage as though they resided in a single file. If a section
name appears more than once, only the first occurrence is used.
This feature allows to maintain as separate HTML files frequently used pieces of HTML code, such as
headers, footers, navigation bars, etc.. In several cases, breaking html code into separate modules may
greatly reduce both development and maintenance times.

 * Indicators for GetHtmlIfsMult subprocedure
D IfsMultIndicators...
D ds
D NoErrors n
D NameTooLong n
D NotAccessible n
D NoFilesUsable n
D DupSections n
D FileIsEmpty n
 ... etc. ...
 * Read externally defined output html files
C eval IfsMultIndicators = gethtmlifsmult(
C '/CgiDevExtHtml/StdTop.Html +
C /CgidevExtHtml/StdRunTime.Html +
C /CgidevExtHtml/StdMsg.Html +
C /CgidevExtHtml/StdPssr.Html +
C /CgidevExtHtml/Talk2Stuff.Html +
C /CgidevExtHtml/StdEnd.Html')

See the example in CGI TEMPLATE5.

Note 1. Subprocedures getHtmlifs and getHtmlifsMult can also load HTML source members as part of
the /QSYS.LIB/... directory.
See the following example:

 * Read externally defined output html files
C eval IfsMultIndicators = gethtmlifsmult(
C '/CgiDevExtHtml/StdTop.Html +
C /QSYS.LIB/MYLIB.LIB/HTMLSRC.FILE/X.MBR')

Note 2. When using getHtmlifs or getHtmlifsMult subprocedure, make sure that the IFS files containing
the external HTML code can be read from the HTTP server user profile QTMHHTP1 (the one adopted

2 of 7 14/09/2011 11:08

CGIDEV2 Tutorial page 16

http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp01=cgidev2&cgiinp02=qrpglesrc&cgiinp03=template4
http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp01=cgidev2&cgiinp02=qrpglesrc&cgiinp03=template5

when running CGI). This can be done in one of the following ways (in the examples below, we assume that
QPGMR owns the files, but this is not relevant at all):

Data --Object Authorities--
User Authority Exist Mgt Alter Ref
*PUBLIC *RX
QPGMR *RWX X X X X

or
Data --Object Authorities--

User Authority Exist Mgt Alter Ref
*PUBLIC *EXCLUDE
QPGMR *RWX X X X X
QTMHHTP1 *RX

Examples for user-defined delimiters (see also this page).

First example:

section name start delimiter: "<!-- Sec_"
section name end delimiter (optional): " -->"
variable name start delimiter: "<var400>"
variable name end delimiter: "</var400>"

C eval HtmlSrcLib = 'CGIDEV2'
C eval HtmlSrcFil = 'HTMLSRC'
C eval HtmlSrcMbr = 'TALK2'
C callp gethtml(HtmlSrcFil:HtmlSrcLib:HtmlSrcMbr:
C '<!-- Sec_':
C ' -->':
C '<var400>':
C '</var400>')

Second example:

section name start delimiter: "<as400>"

C callp gethtmlifs('/CgidevExtHtml/talk2ifs.html':
C '<as400>')

 * Indicators for GetHtmlIfsMult subprocedure
D IfsMultIndicators...
D ds
D NoErrors n
D NameTooLong n
D NotAccessible n
D NoFilesUsable n
D DupSections n
D FileIsEmpty n
 ... etc. ...
 * Read externally defined output html files
C eval IfsMultIndicators = gethtmlifsmult(
C '/CgiDevExtHtml/StdTop.Html -
C /CgidevExtHtml/StdRunTime.Html -
C /CgidevExtHtml/StdMsg.Html -
C /CgidevExtHtml/StdPssr.Html -
C /CgidevExtHtml/Talk2Stuff.Html -
C /CgidevExtHtml/StdEnd.Html':
C '<as400>')

3 of 7 14/09/2011 11:08

CGIDEV2 Tutorial page 17

3. Assign values to html variables

This must be done using subprocedure updHtmlVar.
This subprocedure assigns a value to all the instances of a given html variable name.
Note 3. The value to be assigned must be a character string (numeric fields must be converted or edited to
character strings, see examples number 4 and 5).

Inputs
variable name
variable value
action (optional)

'1' = replace this variable if it exists, otherwise add it (default)
'0' = clear arrays and write this one as the first

trim instructions (optional)
%trim - trim left and right (default)
%triml - trim left only
%trimr - trim right only
%trim0 - don't trim

Examples:

Clear all html variables and assign to html variable custname the value contained in character field
CusNam:

C callp updHTMLvar('custname':CusNam:'0')

1.

Assign to html variable custaddr the value contained in character field CusAdr:

C callp updHTMLvar('custaddr':CusAdr)

2.

Assign to html variable custaddr the value contained in character field CusAdr without trimmimg
it:

C callp updHTMLvar('custaddr':CusAdr:'1':'%trim0')

3.

Assign to html variable ordertotal the value contained in numeric field (9 2) TotThisOrd using
an edit code:

C callp updHTMLvar('ordertotal':
C %editc(TotThisOrd:'J'))

 About edit codes

4.

Assign to html variable ordertotal the value contained in numeric field (9 2) TotThisOrd using
an edit word:

C callp updHTMLvar('ordertotal':
C %editw(TotThisOrd:' , , 0. '))

See this living example.

5.

 For vary large output variables (max 16 Mb) you may use subprocedure updHtmlVar2.
In this subprocedure, instead of passing the name or the value of the substituting variable, you will pass a

4 of 7 14/09/2011 11:08

CGIDEV2 Tutorial page 18

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/books/x091315234.htm
http://www.easy400.net/cgidev2p/trim.pgm

pointer to it and its length.
Inputs

variable name
pointer to the substituting string
length of the substituting string
action (optional)

'1' = replace this variable if it exists, otherwise add it (default)
'0' = clear arrays and write this one as the first

trim instructions (optional)
%trim - trim left and right (default)
%triml - trim left only
%trimr - trim right only
%trim0 - don't trim

Example:

D varPointer s *
D varLength s 10i 0
C callp updHtmlVar2('longdata':
C varPointer:varLength)

4. Write html sections and send the output buffer

This must be done using subprocedure wrtsection.
One can write one or multiple sections in a single call.
Important.
Once all sections have been written, do not forget to send the output buffer to the client. This must be
done by writing a pseudo section named *fini.

Example:

 * Write a single section
C callp wrtsection('start')
 * Write two sections
C callp wrtsection('part1 part2')
 * Send the output html to the remote browser
C callp wrtsection('*fini')

Note 4. Section names are not case sensitive. A section name is a 50 char max alfanumeric string. Only
english letters are supported.

Note 5. Subprocedure wrtSection supports two optional parameters:

NoNewLine indicator.
Set it to *on to tell wrtsection NOT to insert a newline character x'15' at the end of each HTML
output line. This may be useful when binary data are being sent to the browser.
NoDataString value.
What to do when a substitution variable is encountered and no value has been set up with
UpdHtmlVar.
If not specified, output variables left without substitutions display the default "**Missing Data**".

Examples:
D NoDataString c '*** no substitution! ***'
 * Write a section without newline characters
C callp wrtsection('mysection':*on)
 * Write a section with non-default warning for
 * missing substitution variables
C callp wrtsection('mysection':*off:

5 of 7 14/09/2011 11:08

CGIDEV2 Tutorial page 19

C NoDataString)

5. Special output procedures

Subprocedure wrtNoSection
writes data for the browser without using substitution variables or sections.
This subprocedure can be used when a large block of data is to written. This is more likely to happen when
writing non-textual data such as images.
The following example shows how to read an external IFS file (an HTML page, an image, or what you
need) and how to insert it into the CGI output buffer:

D IfsInpBuff s 10000a varying
D InpBuffLen s 10i 0
D IfsObj s 255a
D FileHandle s 10i 0
D ReturnInt s 10i 0
D BytesIn s 10i 0
*
* Read an IFS object into "IfsInpBuff"
C eval IfsObj = '/mypath/mysubpath/myobj.xxx'
* 1-Open the IFS file
C eval FileHandle = open(%trim(IfsObj)
C : O_RDONLY + O_TEXTDATA)
* 2-Read the IFS file
C eval BytesIn = read(FileHandle
C : %addr(IfsInpBuff)
C : %size(IfsInpBuff))
* 3-Close the IFS file
C eval ReturnInt = close(FileHandle)
C eval IfsInpBuff = %trim(IfsInpBuff)
* Insert the string read into the CGI output buffer
C ' ' checkr IfsInpBuff InpBuffLen
C callp WrtNoSection(%addr(IfsInpBuff):
C InpBuffLen)

Subprocedure clrHtmlBuffer
clears any HTML output that has been buffered but has neither been sent to the browser nor written into a
stream file. This is useful when program logic dictates you need to output something other than what has
already been buffered.

C callp clrHtmlBuffer

Subprocedure getHtmlBytesBuffered
Returns the number of bytes in the output HTML buffer.
This number is incremented each time output is written with WrtSection or WrtNoSection.
It is reset to 0 when either WrtSection('*fini') or WrtHtmlToStmf is run.
If this number is allowed to grow to more than 16 MB, the CGI program will fail.

Could be useful to stop creating an output page when its size exceeds a reasonable limit.

D buffsize s 10i 0
C eval buffsize = getHtmlBytesBuffered

Subprocedure getHtmlBufferP
Returns the pointer to the output HTML buffer and the number of bytes used in the output HTML buffer.
This is expecially useful for debugging.

 D OutBuffer s 32767 based(OutbufferP)
 D OutBufferInfo ds
 D OutBufferP *

6 of 7 14/09/2011 11:08

CGIDEV2 Tutorial page 20

 D OutBufferLen 10u 0
 C eval OutBufferInfo=callp(GetHtmlBufferP)

7 of 7 14/09/2011 11:08

CGIDEV2 Tutorial page 21

M

About Cookies1.
Creating a cookie with a CGI - Basic approach2.
Retrieving a cookie in a CGI - Basic approach3.
Creating/Retrieving a cookie in a CGI - Advanced approach4.

1. About Cookies

Cookies are a mechanism for storing persistent data on the client. As HTTP is a stateless protocol, cookies provide a way to
maintain information between client requests.
In a sense, a cookie may be though of as a small data area on the client.
A cookie has the following properties:
Name mandatory Identifies the cookie (as if it were the name

of a data area)
Value mandatory The contents of the cookie (as if it were the

value of a data area). Note that Netscape
Navigator does not support blanks in
the cookie value. If that happens, the
Set-Cookie string is trimmed right at the
first blank met. Therefore it may be needed
to substitute all the blanks in a cookie value
with some other character before creating
the cookie; in such a case, the opposite
operation should be performed after
retrieving the cookie.

Expiration optional The date until which the cookie should
survive. If the expiration is not specified,
the cookie expires when the user session
ends.

Domain optional The domain under which the cookie can be
retrieved. If the domain is not specified, the
web browser should assume the host name
of the server generating the cookie.

Path optional The path under which the cookie can be
retrieved. If the path is not specified, the
web browser should assume the path of
the page generating the cookie.

Cookies are stored and retrieved by the web browser.

Whenever a web page is loaded, the web browser makes available all the unexpired cookies that:

match the domain of the page
(for instance, www.ibm.com or 195.183.8.2)

1.

are in the path of the page
(for instance, to page /cgidev2o/exhibiu8.htm are made available all the cookies with path "/" and all the cookies with path
"/cgidev2o").

2.

For further details on the rules controlling access to cookies, read Determining a Valid Cookie.

2. Creating a Cookie with a CGI - Basic approach

To create a cookie you must provide, in the external html, a Set-Cookie http header, as follow:

1 of 4 14/09/2011 12:12

CGIDEV2 Tutorial page 22

http://www.cookiecentral.com/faq/#3

/$top
Content-type: text/html
Set-Cookie: name=value [;EXPIRES=dateValue] [;DOMAIN=domainName] [;PATH=pathName] [;SECURE]

(mandatory blank line)
<html>
 ... etc. ...

For detail explanation about the Set-Cookie http header, please refer to the following page from Netscape.

3. Retrieving a cookie in a CGI - Basic approach

A CGI can retrieve all the available cookies through the environment variable HTTP_COOKIE. The cookies made available are all
those compliant with the domain name and the path of the CGI. The following example illustrates the value returned from the
environment variable HTTP_COOKIE in a case where two cookies were found:

the first cookie has name=IBM and value=HG1V432
the second cookie has name=Easy400 and value=JohnVincentBrown

IBM=HG1V432; Easy400=JohnVincentBrown

Note 1. As all the available cookies are returned in a single string, it is a program responsibility to retrieve from this string the
cookies it might be interested in.

Note 2. The value of a cookie may contain escaped characters. An escaped character is the ASCII hexadecimal representation of
an ASCII character. For instance, %3D is an escaped character and is the ASCII hexadecimal representation of ASCII character
"=".
Escaped characters are generated by the web browser when storing a cookie. This is done to eliminate conflicts with regulare
string separator and control characters.
Now, it is a responsibility of the CGI program to convert any ASCII escaped characters --in the value of a retrieved cookie-- to the
corresponding EBCIDIC characters.

See our example about creating and retrieving a cookie in a CGI through this approach.

4. Creating/retrieving a cookie in a CGI - Advanced approach
Service program cgidev2/cgisrvpgm2 provides two subprocedures to help managing cookies in a CGI:

crtCookie allows for an easier construction of the Set-Cookie http header
getCookieByName retrieves a given cookie from the HTTP_COOKIE environment variable.

/$top
Content-type: text/html
Expires: 0
/%setmycookie%/

<html>
... etc. ...

 ** Variables used to build the http header "Set-Cookie"
 ** through subprocedure "CrtCookie"
 D SetMyCookie s 1000 varying
 D CookieNam s 1000 varying
 D CookieVal s 4000 varying
 D RetCode s 10i 0
 D Domain s 1000 varying
 D Path s 1000 varying
 D Secure s n
 D Expires s z
 D xdocloc s 512
 ** Other variables
 D TimeNow s z
 D r1 s 10i 0
 D r2 s 10i 0
 *===
 * Main line
 *===
 /free

 // Get broswer input
 nbrVars=zhbgetinput(savedquerystring:qusec);

 // Load external html, if not loaded yet

2 of 4 14/09/2011 12:12

CGIDEV2 Tutorial page 23

http://devedge-temp.mozilla.org/library/manuals/2000/javascript/1.3/reference/cookies.html
http://www.easy400.net/cgidev2p/cookie1.pgm

 gethtml('DEMOHTML':'CGIDEV2':'COOKIE2':'/$');

 // Create the Set-Cookie header
 exsr CrtMyCook;

 // Start the output html
 updhtmlvar('setmycookie':SetMyCookie);
 wrtsection('top');

 // Retrieve cookie current value and display it
 exsr RtvMyCook;
 updHtmlVar('cookienam':CookieNam);
 updHtmlVar('cookieval':CookieVal);
 if CookieVal=' ';
 wrtsection('cookieno');
 else;
 wrtsection('cookieyes');
 endif;

 // End the output html
 UpdHtmlVar('timenow':%trim(%char(TimeNow)));
 wrtsection('endhtml *fini');

 return;

 /end-free
 *===
 * Create a cookie
 * Name: ThreeMonths
 * Value: current timestamp
 * Domain: current CGI domain
 * Path: /
 * Secure: no
 * Expires: three months from now
 *===
 /free

 Begsr CrtMyCook;

 //Retrieve the server domain into variable "Domain"; trim off the port number
 exsr RtvDomain;
 //Reset the domain to blank. The WEB browser assumes the host name of the server
 // generating the cookie
 Domain=' ';

 //Set cookie name, cookie value and cookie path
 CookieNam='ThreeMonths';
 CookieVal=randomString(10);
 Path='/';

 //Set cookie expiration date & time
 TimeNow=%timestamp;
 Expires=TimeNow+%months(3);

 //Create the Set-Cookie header
 SetMyCookie=CrtCookie(CookieNam:CookieVal:RetCode:Domain:
 Path:*off:Expires);

 Endsr;

 /end-free
 *===
 * Retrieve the server domain
 * The server domain is the one the URL of a document starts with,
 * As an example, in the URL
 * http://www.easy400.net/easy400p/maindown.html
 * the server domain is
 * www.easy400.net
 *
 * HOW TO SET THE DOMAIN OF THE COOKIE
 * 1-APPROACH NUMBER ONE (deprecated)
 * Usually, there is no easy way through which your CGI can find out
 * what the server domain is.
 * One way I found, is to have the document URL retrieved from some javascript
 * and have it passed in an input variable of the form invoking the CGI.
 * Example:
 * <form name=cookie2 method=post action="/cgidev2p/cookie2.pgm">
 * <script language=javascript>

3 of 4 14/09/2011 12:12

CGIDEV2 Tutorial page 24

 * document.write("<input type=hidden name=xdocloc value='"+document.location+"'>")
 * </script>
 *
 * </form>
 * In this way the document URL is passed in the input variable "xdocloc".
 * NOTE, however, that if a port number is specified, the port number is returned
 * with the URL and it should not be part of the domain.
 * 2-APPROACH NUMBER TWO (suggested)
 * The easiest way is to specify no domain for the cookie. When this is done, the
 * WEB browser assumes as domain of the cookie the name of the host creating the cookie.
 *
 * Though this subroutine uses approach number ONE to retrieve the domain name for the
 * cookie, the program sets the domain name for the cookie to blank, thus making the
 * WEB browser default the cookie domain to the name of the host creating the cookie.
 *
 *===
 /free

 Begsr RtvDomain;

 Domain=' ';
 xdocloc=zhbgetvar('xdocloc'); //document location ("http://domain:port/...")

 //Remove the URI ("/...") and the port number (if any)
 r1=%scan('http://':xdocloc);
 if r1=1;
 r2=%scan('/':xdocloc:8);
 if r2>8;
 Domain=%subst(xdocloc:8:r2-8);
 r1=%scan(':':Domain);
 if r1>1;
 Domain=%subst(Domain:1:r1-1);
 endif;
 endif;
 endif;

 Endsr;

 /end-free
 *===
 * Retrieve a cookie of given name
 * Returns a string containing the current value of the cookie,
 * or blanks if cookie not found
 *===
 /free

 Begsr RtvMyCook;

 CookieNam='ThreeMonths';
 CookieVal=GetCookieByName(CookieNam);

 Endsr;

See our example about creating and retrieving a cookie in a CGI through this approach.

4 of 4 14/09/2011 12:12

CGIDEV2 Tutorial page 25

http://www.easy400.net/cgidev2p/cookie2.pgm

M

When errors are found in the user's input, it is necessary to send one or more messages to the browser. Formatting and outputting such
messages can be tedious, repetitive, and error-prone.

You can more easyly perform this task, using Mel's service program HTML message support. Do the following:

In the external HTML source member create a set of sections to be used for message outputting. The standard set is available in
CGIDEV2/HTMLSRC member TALK2. The standard set must

contain section names MsgStart, MsgL1, MsgL2, MsgL3, MsgEnd1.
a /%msgtext%/ variable must exist in sections MsgL1, MsgL2, MsgL32.

Look at the example from TALK2:

/$top
Content-type: text/html

<HTML>
 <HEAD>
 <TITLE>Response To Talk To Us</TITLE>
 <style TYPE="text/css">
 <!--
 .centeredtitle { color: Blue; font-weight: Bold; font-size: 24pt; text-align: center }
 .emphasize {color: Blue; font-weight: Bold; }
 .indent40 {margin-left: 40px; }
 .messagestart, .message1, .message2, .message3 {color: Red; font-weight: Bold; }
 .messagestart { font-size: 16pt }
 .message1 { margin-left: 20px; text-indent: -12px; font-size: 12pt }
 .message2 { margin-left: 40px; text-indent: -10px; font-size: 10pt }
 .message3 { margin-left: 60px; text-indent: -10px; font-size: 10pt }
 -->
 </style>
 </HEAD>
<BODY>
 <!-- ... etc. ... -->
/$MsgStart
<div class=messagestart>Errors:</div>

/$MsgL1
<div class=message1>- /%msgtext%/</div>

/$MsgL2
<div class=message2>- /%msgtext%/</div>

/$MsgL3
<div class=message3>- /%msgtext%/</div>

/$MsgEnd
<div class=messagestart><hr></div>

1.

Optionally you may use subprocedure CfgMsgs to override the default externally described HTML names:
message text field name (msgtxt),
starting section name (msgstart),
level 1 section name (msgl1),
level 2 section name (msgl2),
level 3 section name (msgl3),
ending section name (msgend).

2.

Use subprocedure ClrMsgs to clear the messages stored in the service program's arrays and to set their count to zero3.
Use subprocedure AddMsg to add a message's text and formatting level (1, 2, or 3) to the service program's arrays4.
Use subprocedure GetMsgCnt to retrieve the number of messages currently stored in the service program's arrays. It can be used to
condition calling WrtMsgs.

5.

Use subprocedure WrtMsgs to write the messages in the arrays to standard output. If no messages are there, nothing is done.6.

For examples of using HTML messages, please look at the source of RPG CGI program TEMPLATE.

1 of 1 14/09/2011 14:26

CGIDEV2 Tutorial page 26

http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp01=cgidev2&cgiinp02=qrpglesrc&cgiinp03=template

You may maintain and retrieve a counter for the number of times a CGI program of yours is accessed
(a page is visited) by using Mel's service program subprocedure CountP

Read through to learn how to do it.

1. File CGICOUNT
File CGICOUNT is used to optionally score accesses to given CGI pages. You implicitly duplicate it
from library cgidev2 to your object (production) library when you use command setcgilib.

2. Subprocedure countP
Use this procedure to increment and to retrieve the number of times a given page was accessed.

Example:

/copy mysrclib/qrpglesrc,prototypeb
/copy mysrclib/qrpglesrc,usec
/copy mysrclib/qrpglesrc,variables3
 ... etc. ...
 * Get updated counter for program "mylib/hello1" into field "counter"
C eval rc = docmd('OVRDBF FILE(CGICOUNT) +
C TOFILE(mylib/CGICOUNT) +
C SECURE(*YES)')
C eval counter=countp('mylib HELLO1 ')

1 of 1 14/09/2011 14:44

CGIDEV2 Tutorial page 27

You may retrieve the value set by the server for a particular HTTP environment variable by using Mel's
prototyped procedure GetEnv. This procedure calls QtmhGetEnv API.

1 of 3 14/09/2011 14:58

CGIDEV2 Tutorial page 28

QtmhGetEnv API provides information about the following environment variables:
(for a complete list of the available environment variables, see this page)

Environment
variable

Meaning

AUTH_TYPE If the server supports client authentication and the script is a protected script,
this environment variable contains the method that is used to authenticate the
client. For example: Basic

CGI_ASCII_CCSID Contains the ASCII CCSID the server used when converting CGI input data. If the server did
not perform any conversion, (for example, in %%BINARY%% mode), the server sets this value
to the DefaultNetCCSID configuration directive value

CGI_MODE Contains the CGI conversion mode the server is using for this request. Valid values are
%%EBCDIC%%, %%MIXED%%, %%BINARY%%, or %%EBCDIC_JCD%% (for more
information, see HTTP Server for AS/400 Webmaster's Guide). The program can use this
information to determine what conversion, if any, was performed by the server on CGI input
data and what format that data is currently in

CGI_EBCDIC_CCSID Contains the EBCDIC CCSID under which the current server job is running (DefaultFsCCSID
configuration directive). It also represents the current job CCSID that is used during server
conversion (if any) of CGI input data

CONTENT_LENGTH When the method of POST is used to send information, this variable contains the number of
characters. Servers typically do not send an end-of-file flag when they forward the information
by using stdin. If needed, you can use the CONTENT_LENGTH value to determine the end of
the input string. For example: 7034

CONTENT_TYPE When information is sent with the method of POST, this variable contains the type of data
included. You can create your own content type in the server configuration file and map it to a
viewer. For example: Application/x-www-form-urlencoded

GATEWAY_INTERFACE The version of the CGI specification with which the server complies. Format: CGI/revision

HTTP_ACCEPT MIME content types the browser will accept.

HTTP_COOKIE All the cookies available to the current page.

HTTP_HOST Contains the HTTP host URL.
Example: www.easy400.net

HTTP_REFERER Reference to the page or frame the current page or frame was linked from

HTTP_USER_AGENT String identifying the Web client. Includes name and version of the browser, request made
through a proxy, and other information.

IBM_CCSID_VALUE The CCSID under which the current server job is running.

PATH_INFO The extra path information following the path information required to identify the CGI program
name.

PATH_TRANSLATED The server provides a translated version of PATH_INFO, which takes the path and does any
virtual-to-physical mapping to it.

QUERY_STRING Anything that follows the first ? in the request URL. The string is encoded in the standard URL
format of changing spaces to '+" and encoding special characters with '%xx' hexadecimal
encoding.

REMOTE_ADDR The IP address of the remote host making the request

REMOTE_HOST The hostname making the request.

REMOTE_IDENT User ID of the remote user.

REQUEST_METHOD The method with which the request was made. For HTTP, this is GET or POST.

REMOTE_USER If you have a protected script and the server supports client authentication, this environment
variable contains the user name that is passed for authentication

SCRIPT_NAME A virtual path to the program being executed, used for self-referring URLs.

SERVER_ADDR The server's IP address

SERVER_NAME The server's hostname, DNS alias, or IP address as it would appear in self-referring URLs

SERVER_PORT The port number to which the request was sent.

SERVER_PROTOCOL The name and revision of the information protocol this request came in with. Format:
protocol/revision

SERVER_SOFTWARE The name and version of the information server software answering the request (and running
the gateway). Format: name/version.
For example:
IBM-Secure-ICS/AS/400 Secure HTTP Server

2 of 3 14/09/2011 14:58

CGIDEV2 Tutorial page 29

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/rzaie/rzaieenvvar.htm
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/QB3AEO04/1.1.4.1

We provide a live example of retrieving environment variables:

program ENVVAR retrieves the most common environment variables.

Example: the environment variable SERVER_PROTOCOL

 /copy mysrclib/qrpglesrc,hspecs
 /copy mysrclib/qrpglesrc,hspecsbnd
 * Variables common to all CGIs
 /copy mysrclib/qrpglesrc,prototypeb
 /copy mysrclib/qrpglesrc,usec
 /copy mysrclib/qrpglesrc,variables3
 * ... etc. ...
 * Server's Protocol
C eval S_Protocol =getenv('SERVER_PROTOCOL':
C qusec)

3 of 3 14/09/2011 14:58

CGIDEV2 Tutorial page 30

http://www.easy400.net/cgidev2p/envvar.pgm

Besides getenv (retrieve environment variable), two more environment variable functions are
available:

contlen1.
This procedure returns as a 4 byte integer the contents of the CONTENT_LENGTH environment
variable. This environment variable contains the number of characters of the input string (query
string) when the POST method is used. Example:

 * Variables common to all CGIs
 /copy mysrclib/qrpglesrc,prototypeb
 /copy mysrclib/qrpglesrc,usec
 /copy mysrclib/qrpglesrc,variables3
 * ... etc. ...
 * Retrieve query string length
C eval inactln = contlen

putenv2.
In some circumstances, one may need to change the value of an existing environment variable,
or to create a new environment variable.
This is useful for communication between programs running in the same job, such as your
program and the Net.Data language environment.
Example:

 * Variables common to all CGIs
 /copy mysrclib/qrpglesrc,prototypeb
 /copy mysrclib/qrpglesrc,usec
 /copy mysrclib/qrpglesrc,variables3
 * ... etc. ...
 * Set to blank environment variable QUERY_STRING
C callp putenv('QUERY_STRING=':qusec)

1 of 1 14/09/2011 15:38

CGIDEV2 Tutorial page 31

The following timing functions allow to compute the number of seconds elapsed since a given
moment. They are generally used to compute the response time of a program.

1. TimerStart
Use subprocedure timerStart to start computing the elapsed time.
Example:
 * Set timer for calculating execution time
C callp TimerStart()

1. TimerElapsed
Use subprocedure timerElapsed to receive the number of seconds elapsed since the last
timerStart.
Example:
 * Program timing variable
D sec s 15p 6
C eval sec = TimerElapsed()
C callp updhtmlvar('runtime':%editc(sec:'N'))
C callp wrtsection('runtime')

CGIDEV2 Tutorial page 32

ChkIfsObi2: check an IFS object
ChkIfsObi3: check an IFS object
LoadStmf: load a stream file

Subprocedure chkIFSObj2 checks whether an IFS object exists and can be accessed. If so, it also returns some
information about it.

Note 1. This procedure was named chkIFSObj2 to distinguish it from subprocedure chkIFSObj made available by
Giovanni B. Perotti for freeware IFSTOOL.

chkIFSObj2

Checks IFS object's existence and optionally returns its type, size, and error information.
No authority to the object is required to use this subprocedure.
*X authority is required for all subdirectories in the object's path. If this authority is lacking, the object is not
accessible.
If the object is found and is accessible, ChkIfsObj2 returns *on. Otherwise, it returns *off. See parameters,
below, for more details.
If you don't care about the object's type or size or error details, all parameters except the first are optional.

Required parameter group:
Returned value: indicator *on =object exists and can be accessed

*off =object does not exist or cannot be accessed
Parameters: Null terminated string of complete path to the object

11a
(optional)

object type (if successful)

10i 0
(optional)

number of bytes (if successful)

10i 0
(optional)

error number
- if successful, contains 0
- otherwise, contains C's error number

256a
(optional)

error text
- if successful, contains a zero length string
- otherwise, contains the C message text associated with C's error number

Coding examples:

D indicator s n
D ifsObj s 256a inz('/home/joe/x.y')
D objType s 11a varying
D objSize s 10i 0
D rc s 10i 0
D errText s 256a varying
C eval indicator = ChkIfsObj2(%trim(ifsObj):
C objType:objSize:
C rc:errText)

1 of 4 14/09/2011 16:12

CGIDEV2 Tutorial page 33

http://www.easy400.net/ifstool/html/ifstool.htm

* if you only want to find out if the object is accessible
C eval indicator = ChkIfsObj2('/home/joe/x.y')
* if you also want the object's type
C eval indicator = ChkIfsObj2('/home/joe/x.y':
C objType)
* if you also want the object's size
C eval indicator = ChkIfsObj2('/home/joe/x.y':
C objType:objSize)
* if you also want C's errno & description when a failure occurs
C eval indicator = ChkIfsObj2('/home/joe/x.y':
C objType:objSize:
C rc:errText)

Subprocedure chkIFSObj3 checks whether an IFS object exists and can be accessed. If so, it also returns more
information about it than subprocedure chkIfsObj2.

chkIFSObj3

Checks IFS object's existence and optionally returns its type, size, creation timestamp, codepage, CCSID and
error information.
No authority to the object is required to use this subprocedure.
*X authority is required for all subdirectories in the object's path. If this authority is lacking, the object is not
accessible.
If the object is found and is accessible, ChkIfsObj2 returns *on. Otherwise, it returns *off. See parameters,
below, for more details.
If you don't care about the object's type, size, creation timestamp, codepage, CCSID or error details, all
parameters except the first are optional.

Required parameter group:
Returned value: indicator *on =object exists and can be accessed

*off =object does not exist or cannot be accessed
Parameters: Null terminated string of complete path to the object

11a
(optional)

object type (if successful)

10i 0
(optional)

number of bytes (if successful)

z
(optional)

creation timestamp (if successful)

5u 0
(optional)

codepage (if successful)

5u 0
(optional)

CCSID (if successful)

10i 0
(optional)

error number
- if successful, contains 0
- otherwise, contains C's error number

256a
(optional)

error text
- if successful, contains a zero length string
- otherwise, contains the C message text associated with C's error number

Coding examples:

D indicator s n
D ifsObj s 256a inz('/home/joe/x.y')
D objType s 11a varying
D objSize s 10i 0
D objCrtStamp s z
D objCodepage s 5u 0
D objCCSID s 5u 0
D rc s 10i 0

2 of 4 14/09/2011 16:12

CGIDEV2 Tutorial page 34

D errText s 256a varying
C eval indicator = ChkIfsObj3(%trim(ifsObj):
C objType:objSize:
C objCrtStamp:
C objCodePage:objCCSID:
C rc:errText)

* if you only want to find out if the object is accessible
C eval indicator = ChkIfsObj3('/home/joe/x.y')
* if you also want the object's type
C eval indicator = ChkIfsObj3('/home/joe/x.y':
C objType)
* if you also want the object's size
C eval indicator = ChkIfsObj3('/home/joe/x.y':
C objType:objSize)
* if you also want the object's creation stamp
C eval indicator = ChkIfsObj3('/home/joe/x.y':
C objType:objSize:
C objCrtStamp)
* if you also want the object's codepage
C eval indicator = ChkIfsObj3('/home/joe/x.y':
C objType:objSize:
C objCrtStamp:
C objCodepage)
* if you also want the object's CCSID
C eval indicator = ChkIfsObj3('/home/joe/x.y':
C objType:objSize:
C objCrtStamp:
C objCodepage:CCSID)
* if you also want C's errno & description when a failure occurs
C eval indicator = ChkIfsObj3('/home/joe/x.y':
C objType:objSize:
C objCrtStamp:
C objCodepage:CCSID:
C rc:errText)

Subprocedure loadStreamFile loads a stream file in memory.
This may be useful when the stream file data must be processed. An example could be writing the stream file data
to the html output buffer through the wrtNoSection subprocedure.

Warnings:

Stream files exceeding the 16 MB size (16,776,704 byte) cannot be loaded in memory.1.
The user program is responsible, after calling this subprocedure, for releasing the memory dynamically
acquired by the subprocedure (see the example below).

2.

Required parameter group:
Return code: 0 = successful operation

-1 = IFS object not found
-2 = not a stream file
-3 = stream file size is 0
-4 = stream file size exceeds 16 Mb
-5 = cannot allocate memory
-6 = stream file cannot be opened

Input parameters: Stmf: path and name of the stream file
DataType:

BIN - do not perform any CCSID converstion, take the data as they are
TEXT - convert the data to the CCSID of the job

3 of 4 14/09/2011 16:12

CGIDEV2 Tutorial page 35

Output parameters: DataLength: length of stream file data
DataPointer: pointer to the memory area containing the stream file data

Example:

D stmf s 1024 varying
D rc s 10i 0
D dataLength s 10i 0
D dataPointer s *
D data s 1000 based(dataPointer)
 /free
 stmf='/cgidev/conf/httpd.conf';
 rc=LoadStreamFile(stmf:'TEXT':DataLength:DataPointer);
 if rc=0;
 // ... process the stream file data in memory, pointed by "dataPointer" ...
 dealloc(n) DataPointer; // release the allocated memory
 endif;
 return;

4 of 4 14/09/2011 16:12

CGIDEV2 Tutorial page 36

On May 20, 2009, CGISRVPGM2 subprocedure zhbGetInput() has been added the ability to upload
PC files.

The work was done by Ron Egyed, RJE Consulting Inc, New Port Richey (FL), U.S..

The way this feature works is very simple:

If a <form ...> includes the parameter enctype="multipart/form-data", it can upload PC files.
A nice way to let the user browse the PC an pick up the file to be uploaded is that of using
<input type="file" name="namexxx" size="..." device="files">
where namexxx is a name of your choice.
When the form is submitted, a copy of the PC file is sent to the HTTP server
As soon as the CGI program runs subprocedure zhbGetInput(), the file is uploaded to IFS
directory /tmp
Subprocedure zhbGetInput() provides two input variables that can be received by
subprocedure zhbGetVar():

the first, named namexxx, contains the name of the PC file (e.g. mytext.txt).
Note. Usually browsers, when uploading a file to a server, transfer just the PC file
name, not its path. This is done for security reasons. However, some browser may also
transfer the file path, which would then be shown in this variable (e.g. C:\mypath
\mytext.txt). This is for instance done by Internet Explore when the following option is
enabled (default case): Tools-> Internet Options-> Security-> Customized level->
Include local path during a file upload to a server.
the second, named namexxx_tempfile, contains the path and the name of the IFS file
uploaded from the PC file. Files are always uploaded to IFS directory /tmp and are
assigned unique names (e.g. /tmp/mytext_395935_20110128094216294000.txt). It is
then up to the CGI program to rename the uploaded stream file and to move it to the
appropriate IFS directory.

Please note that namexxx is the name you have assigned to the input variable in your form.
The CGI program is of course able to receive via subprocedure zhbGetVar() any other input
parameter sent from the form.

A sample program taking advantage of the file-upload feature is the ILE-RPG CGI program
CGIDEV2/UPLOAD.
To run it click here
To display its source click here
To display its external HTML click here.

For more details on this technique, take a look at the Easy400 FUPLOAD utility, this page.

Though the ability to upload files sounds great, there might be a need to restrict it to some users or to
some file types (extensions).

There are two ways to perform such a validation:

1 of 3 14/09/2011 17:42

CGIDEV2 Tutorial page 37

http://www.easy400.net/cgidev2p/upload.pgm
http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp01=cgidev2&cgiinp02=qrpglesrc&cgiinp03=upload
http://www.easy400.net/cgidev/html/upload.txt

Client validation1.
In principles, this is the best approach, as the validation process takes place on the client and
is immediate. What you need is some JavaScript function validating the file to be uploaded.
This Javascript function must then be made available in the external HTML of your upload
program.
The only validation that makes sense on the client side is on the extension of the file to be
uploaded.
As an example, the external HTML of CGI program CGIDEV2/UPLOAD contains a JavaScript
validation function named ValidateExtension(). This function works on three arguments:

the name of the file to be uploadeda.
a constant (possible values 'yes' or 'no') telling whether extension validation should take
place

b.

an array of allowed extensionsc.
Parameters b) and c) should be customized according to the installation needs. However, as
this may be an hazard, a special command - cgidev2/updalwext - has been developed to
customize these parameters, which are then set in the script from program UPLOAD as output
variables.

Server validation2.
A file upload goes through two stages:

The PC file(s) are trasmitted to the server along with any other input field. This is done
by the HTTP server.

a.

The application program (the CGI program) takes care of receiving the input variables
and the input file(s). This occurs when CGIDEV2/CGISRVPGM2 subprocedure
ZhbGetInput() is invoked. Usually ZhbGetInput() would copy the input file(s) to IFS
stream file(s) in directory /tmp.
However, before creating an IFS stream file, subprocedure ZhbGetInput() checks
whether an Exit Point Validation User Program is available and, if so, asks it to validate
the file.

If the validation is successful, the PC file is uploaded to an IFS stream file.
If the validation fails, no IFS stream file is created, the name of the file is
returned as

*** NOT VALIDATED ***
and an error message is written to the CGIDEBUG file.

b.

What you could then do is to write such a Validation User Program and make it available for
the appropriate Exit Point. This is how you do it:

Writing the upload validation programi.
The validation program receives two parameters, the qualified name (path, file
name and extension) of the IFS stream file to be created and a return code:
D UPLOADVAL pr
D filename 1024 varying
D retcode 10i 0
D UPLOADVAL pi
D filename 1024 varying
D retcode 10i 0

A value 0 (zero) of the return code means that the PC file passed the validation,
a value -1 means that the validation was not passed (failed).
Most sensitive items for validation are the file extension and the user name (the
user name, to be available, requires user validation through the appropriate
HTTP directives).
The validation program could as well return a different qualified name for the IFS
stream file to be created.
As an example, you could look at program CGIDEV2/UPLOADVAL, press here
to display its source. Please note that this validation program accepts only files
with extension csv.

Making the upload validation program available to the
Exit Point

ii.

Run command cgidev2/updexitp. The following screen appears:
 Update Exit Points

1.

2 of 3 14/09/2011 17:42

CGIDEV2 Tutorial page 38

http://www.easy400.net/cgidev2p/upload.pgm
http://www.easy400.net/cgidev/html/upload.txt

Type option, press Enter.
 2=Change

 Exit point User program
 FILE-UPLOAD-001

 F3=End

Type 2 in front of the FILE-UPLOAD-001 exit point name to receive the
following screen:
 Update Exit Points

 Exit point FILE-UPLOAD-001
 User program
 Library

 F3=End F12=Cancel

Then type the name and the library name of your upload validation program.
Just as an example you could specify program CGIDEV2/UPLOADVAL.
We suggest to create your own file upload validation program in some library of
yours.
Never change CGIDEV2 programs, nor develop objects in library CGIDEV2:
when installing the next CGIDEV2 release your changes would disappear.

2.

3 of 3 14/09/2011 17:42

CGIDEV2 Tutorial page 39

In debugging your CGI programs you may hit cases where you would need to see how

input string to your program
HTML output from your program

look like.

In Mel's service program facilities exist to trace input/output html and here is how you can implement
them to debug your CGI programs.

1. File CGIDEBUG

Mel's service program may trace the input string and the response html on a file named CGIDEBUG.
You implicitly duplicate it from library cgidev2 to your object (production) library when you use
command setcgilib.

2. Start/Display/End CGIDEBUG

You start html trace with command
 mylib/CGIDEBUG ACTION(*ON)
You display html trace with command
 mylib/CGIDEBUG ACTION(*DSPDATA)
You end html trace with command
 mylib/CGIDEBUG ACTION(*OFF)
You clear html trace with command
 mylib/CGIDEBUG ACTION(*CLRDATA)

At the end of your debugging session you must remember to end your html trace. If you leave the
trace on, sooner or later you will fill up file CGIDEBUG, and your CGI will start bumping out!!!

3. Clear the CGIDEBUG file

You may need to clear the CGIDEBUG files from time to time. You cannot use the clrpfm
command, because these files are locked by the HTTP server.
You should instead use command
 cgidev2/cgidebug *CLRDTA or
 cgidev2/clrdebug (use F4 to specify the library name)
after adding CGIDEV2 to the library list.

CGIDEBUG is far from being your ultimate debugging facility for CGIs. Please read page CGI
debugging tips.

1 of 1 14/09/2011 18:04

CGIDEV2 Tutorial page 40

If you decide to use the CGI file debug trace facilities, you may find usefull some Mel's service program
functions that allow your CGI's to write their own specific pieces of information to this file.

The following procedures are available for use in your CGI programs (use opcode callp to invoke them:

isdebug1.
returns a 1-char value to indicate whether debugging is on ('1') or off ('0').
wrtdebug2.
writes into the debugging physical file, CGIDEBUG, the text passed to it as a parameter.
WRTDEBUG is used by several of the service program's subprocedures. You can use it, as desired.
No output is generated unless debugging output has been turned on by the CGIDEBUG *ON
command or the optional parameter, force, has been set to *ON.
wrtjobdbg3.
writes the qualified job name, current date, and current time into the debugging file.
wrtpsds4.
receives the program status data area and unconditionally writes it in a formatted manner into the
debugging file.
SetNoDebug5.
turns off all conditionally or unconditionally debugging, thus improving the performance of a CGI.

 /copy mysrclib/qrpglesrc,hspecs
 /copy mysrclib/qrpglesrc,hspecsbnd
 * Variables common to all CGIs
 /copy mysrclib/qrpglesrc,prototypeb
 /copy mysrclib/qrpglesrc,usec
 /copy mysrclib/qrpglesrc,variables3
 * ... etc. ...
 * Example of using
 * wrtdebug(text:force)
C callp wrtdebug(PgmName +
C ' execution time (seconds) ' +
C %trim(%editw(sec:' 0 . ')):*on)
 * Example of writing qualified job name to debug file.
 * Note that the force parameter is set to *on
C callp wrtjobdbg(*on)
&nspp;* Example of sending psds data to cgidebug physical file
C callp wrtpsds(psds)

In your CGI programs you may use a program status data structure and a program status subroutine
to trap program status error and to

notify the client user that an error has occurred
use function wrtpsds to format and write the contents of the program status data structure to the
CGIDEBUG file.

See how this is implemented in program CGIDEV2/TEMPLATE.

1 of 3 14/09/2011 20:23

CGIDEV2 Tutorial page 41

F infsr(*pssr)
 * Prototype definitions and standard system API error structure
 /copy cgidev2/qrpglesrc,prototypeb
 /copy cgidev2/qrpglesrc,usec
 *
 * For program status data structure and program status subroutine
D psds sds
D psdsdata 429
D pssrswitch s 1 inz(*off)
D wrotetop s 1 inz(*off)
 *
 **
 * Program status subroutine
 **
C *pssr begsr
 * If have already been in pssr, get out to avoid looping
C if pssrswitch=*on
C eval *inlr = *on
C return
C endif
 * Set on switch to indicate we've been here
C eval pssrswitch=*on
 * Write HTML sections (top if not already done, pssr, and *fini)
C if wrotetop=*off
C callp wrtsection('top')
C endif
C callp wrtsection('pssr endhtml *fini')
 * Send psds data to cgidebug physical file
C callp wrtpsds(psds)
C eval *inlr = *on
C return
C endsr

2 of 3 14/09/2011 20:23

CGIDEV2 Tutorial page 42

Mel's service program includes several data conversion functions you may take advantage from.

You may find examples about these functions by scanning through PDM the source file QRPGLESRC in library
CGIDEV2.

Conversion procedures from module XXXDATA
Subprocedure char2hex converts a character string to its hexadecimal representation.1.
Subprocedure hex2char converts a character string in hexadecimal format to its character
representation.

2.

Subprocedure chknbr accepts a character string and an optional parameter specifying the maximum
number of digits to the left of the decimal point. Additional optional parameters are available to request
that any errors found should be formatted as messages and added to the service program's message
arrays, the text that should be used to describe the field in the messages, and whether a message
should be sent if the field's value is less than zero.
Chknbr returns a structure containing seven indicators. The indicators and their meaning when *on are:

one or more errors occurred1.
non-numeric characters (includes minus sign in wrong place)2.
multiple decimal points3.
multiple signs (both leading and trailing)4.
zero length input or no numeric characters5.
too many digits to the left of the decimal point6.
no errors, but value is less than 0.7.

Note 1. Indicator 7 *on does not set indicator 1 *on.

3.

Subprocedure c2n converts a character string to a floating point number. It is recommended that you
check the string with chknbr before calling c2n.

4.

Subprocedurec2n2 converts a character string to a packed 30.9 number. c2n2 performs faster than
c2n and has none of c2n's floating point precision problems. Therefore, it is recommended that you use
c2n2 instead of c2n. It is recommended that you check the string with chknbr before calling c2n2.

5.

SubprocedurexlatWCCSIDs uses CCSIDs to translate variable length strings up to 32767 characters
in length.
If optional parameters fromCCSID and toCCSID are specified, they are used for the translation.
Otherwise, translation between ASCII and EBCDIC is performed using the CCSIDs found in the
CGI_EBCDIC_CCSID and CGI_ASCII_CCSID environment variables. Input parameter, toebcdic, is
used to determine whether translation is from ASCII to EBCDIC (*on) or from EBCDIC to ASCII (*off).

6.

Subprocedure uppify converts all the characters in a string to upper case.
An optional CCSID parameter may be used to support non-english language characters.
Examples:
D ccsid 10i 0
 * If you want the best possible performance and the
 * English language characters are sufficient, do
 * not use the CCSID parameter.
C eval charstring = uppify(charstring)
 * To convert to uppercase a non-english language
 * character string, you must pass the correct CCSID
 * as second parameter.
 * This takes 2 times as long as using no CCSID.
 * For instance, if the character string is in swedish language:
C eval ccsid = 278
C eval charstring = uppify(charstring:ccsid)

7.

A.

1 of 5 14/09/2011 22:22

CGIDEV2 Tutorial page 43

 * A value 0 for the CCSID parameter instructs the uppify
 * procedure to use the job CCSID.
 * This takes 3 times as long as using no CCSID.
C eval charstring = uppify(charstring:0)

Subprocedure lowfy converts all the characters in a string to lower case.
An optional CCSID parameter may be used to support non-english language characters.
Examples:
D ccsid 10i 0
 * If you want the best possible performance and the
 * English language characters are sufficient, do
 * not use the CCSID parameter.
C eval charstring = lowfy(charstring)
 * To convert to uppercase a non-english language
 * character string, you must pass the correct CCSID
 * as second parameter.
 * This takes 2 times as long as using no CCSID.
 * For instance, if the character string is in swedish language:
C eval ccsid = 278
C eval charstring = lowfy(charstring:ccsid)
 * A value 0 for the CCSID parameter instructs the uppify
 * procedure to use the job CCSID.
 * This takes 3 times as long as using no CCSID.
C eval charstring = lowfy(charstring:0)

8.

Conversion procedures from module XXXDATA1
When using the GET method to send input to a CGI program, non-alphanumeric characters in the
query string must be replaced by so called "escape sequences".
An escape sequence is made of

an escape character "%"
followed by two characters which represent the hexadecimal value of the corresponding ASCII
character.

For instance, if the query string contains the following input
 cusname=Van der Meer
then each of the two spaces in "Van der Meer" must be replaced by the escape sequence %20 (as the
ASCII representation of a space character is x'20').

The tool to replace non-aplhanumeric characters with the corresponding escape sequences is
subprocedure UrlEscSeq:

D inpString s 32767 varying
D outString s 32767 varying
 *
C eval outString=UrlEscSeq(inpString)

A "trim right" indicator can be optionally passed to subprocedure UrlEscSeq.
If it is not passed, or if it is passed and it is *on, the input string is trimmed right before being
processed.
If it is passed and it is *off, the input string is not trimmed right (trailing blanks are converted to escape
sequences %20):
D inpString s 32767 varying
D outString s 32767 varying
D trimRightInd s n
 /free
 trimRightInd=*off;
 outString=UrlEscSeq(inpString:trimRightInd);

You may use CGI program TSTESCSEQ to display the result of converting an input string to an output
string containing escaped sequences. In this example, the input string is trimmed right before being
processed.

Subprocedure UrlUnEscSeq may be used to convert back a string containing escape sequences, for

B.

2 of 5 14/09/2011 22:22

CGIDEV2 Tutorial page 44

instance to convert the string "Van%20der%20Meer" to "Van der Meer":
D inpString s 32767 varying
D outString s 32767 varying
 *
C eval outString=UrlUnEscSeq(inpString)

Conversion procedures from module XXXWRKHTML
When displaying database fields in a HTML page, it may happen that some data containing special
HTML characters are interpreted as HTML tag delimiters thus generating ununderstandable strings. On
the other way, multiple consecutive blanks in a field are displayed as a single space, which in some
cases may be unappropriate.
The following three subprocedures allow to convert special characters and blanks into their
corresponding HTML character entities, in order to display field data exactly as they are on databases.
All procedures require

the input and the ouput fields be defined with varying length not exceeding 32767

Subprocedure encode
converts the following special characters to their HTML entity equivalents:

 " is converted to "
 & is converted to &
 < is converted to <
 > is converted to >

1.

Subprocedure encodeBlanks
converts blanks to non-breaking spaces ().
This procedure is an alternative to use the traditional HTML tags <pre> and </pre>.

Examples:

D VarOutput s 1000 varying

 /free
 read record;
 dow not %eof;
 VarOutput=%trimr(recordField);
 VarOutput=Encode(VarOutput);
 VarOutput=EncodeBlanks(VarOutput);
 updhtmlvar('htmlvar':VarOutput);
 wrtsection('TableRow');
 read record;
 enddo;
 /end-free

 /free
 read record;
 dow not %eof;
 updHtmlVar('htmlvar':EncodeBlanks(
 Encode(%trimr(recordField))));
 wrtsection('TableRow');
 read record;
 enddo;
 /end-free

2.

Subprocedure encode2
allows to translate special characters to their corresponding named entities as documented in a
user specified stream file. If not provided, the stream file defaults to /cgidevexthml
/encod2arr.txt .

3.

C.

3 of 5 14/09/2011 22:22

CGIDEV2 Tutorial page 45

Required parameter group:
returned
value:

65528 char max, input string with special characters
converted to HTML named entities

inputs: 1891 char max, input string with special characters
to be converted to HTML named entities

10i 0, return code: 0 =successful
-1 =file error. Could be any of the following:

file not found0.
file not accessible (authority, etc.)0.
file empty0.
file contains no valid records
(at run time, a detailed message is sent
to the CGIDEBUG debugging file)

0.

256 char max,
(optional)

"entities" stream file, the file that contains the arrays
of characters and character entities.
If omitted,
file /cgidevexthtml/encode2fil.txt is used.

Note 2. Click here to display stream file /cgidevexthtml/encode2fil.txt .

Note 3. Click here to run CGI dspencode2. This program uses procedure encode2 to test an
"entity" stream file.

Note 4. To customize the arrays:

Never modify, move, or rename the default stream file /cgidevexthtml
/encode2fil.txt .
Copy the default stream file to an IFS file of your own.
Make sure QTMHHTP1 has *RX authority to your file.
Modify your file:

Record format, one record per line
Comment records:

positions 1 -2 must be //
Data records:

Position 1 = the character to be encoded
Positions 2 - 9 = the character entity to be substituted for the character. If
these positions are blank, the record is ignored.
Remainder of record = blanks or comments

Use your file in the EntitiesFile parameter.

Coding examples:

D inputString s 1891 varying
D outputString s 65528 varying
D dftFile s 256
D rc s 10i 0 inz(0)
 /free
 dftFile='/cgidevexthtml/encode2fil.txt';
 outputString=encode2(inputString:rc:dftFile);

/end-free

* Passing a literal
C eval result = encode2('':rc)
* Passing a varying field.
C eval vfield = ''
C eval result = encode2(vfield:rc)
* Passing from a fixed length field
C eval ffield = ''
C eval result = encode2(%trimr(ffield):rc)
* Passing an expression
C eval result = encode2('abc' +

4 of 5 14/09/2011 22:22

CGIDEV2 Tutorial page 46

C %trimr(ffield) +
C vfield + 'xyz':rc)

Conversion procedures from module XXXCVTSTG
Subprocedure CvtStg (Convert String) can be used to convert a memory string from one CCSID to
another CCSID. For instance you could convert a memory string from CCSID 1208 (Unicode, UTF-8
Level 3) to CCSID 37 (EBCDIC USA, Canada, Netherlands, Portugal, Brazil, Australia, New Zealand).
This is how you use it:
 * "InpCCSID" is the CCSID of the input string
 * (the string to be converted)
 * "InpBufP" is a pointer to the input string
 * "InpBufLen" is the length on the input string
 * "OutCCSID" is the CCSID of the output string
 * (the string to receive the converted value)
 * "OutBufP" is a pointer to the output string
 * "OutBufLen" is the length of the output string
 * (this length must be large enough
 * to contain the converted value)
 * "OutDtaLen" is the length of the converted value
 * once it is converted in the output string
D InpCCSID s 10u 0
D InpBufP s *
D InpBufLen s 10u 0
D OutCCSID s 10u 0
D OutBufP s *
D OutBufLen s 10u 0
D OutDtaLen s 10u 0
 /free
 // Convert a memory string from CCSID 1208 to CCSID 37
 InpCCSID=1208;
 OutCCSID=37;
 CvtStg(InpCCSID:InpBufP:InpBufLen;
 OutCCSID:OutBufP:OutBufLen:OutDtaLen);

D.

5 of 5 14/09/2011 22:22

CGIDEV2 Tutorial page 47

This subprocedure allows an RPG-ILE program to run a CL command.

Example: Override a database file

 * Variables common to all CGIs
 /copy mysrclib/qrpglesrc,prototypeb
 /copy mysrclib/qrpglesrc,usec
 /copy mysrclib/qrpglesrc,variables3
 * ... etc. ...
 * Override database file CTRDVY
C eval rc = docmd('OVRDBF FILE(CTRDVY) +
C TOFILE(CGIDEV2/CTRDVY) +
C SECURE(*YES)')

Note
On return from docmd, variable rc (return code) contains

0, if the command was executed
1, if the command failed.

1 of 1 14/09/2011 22:38

CGIDEV2 Tutorial page 48

There may be cases, where a page created from a CGI (dynamic page)

is frequently accessed
requires some relevant processing, thus providing a rather long response time
and its contents may change at unpredictable times

Examples of such cases could be:

our page about "our subscribers per country"
many other statistics pages

One interesting way to serve such requests is to have some dynamic processes generating static
pages:

user response is much faster
computer load much lower

the generation of a static page may be triggered by an event or scheduled at a regular time
interval

Implementing such a process is quite easy: you have to write a batch program similar to a CGI and
gear it to some event or schedule.

Here is how you may write such a program:

Develop the external HTML as usual for a CGI program, but
do not insert the initial http header
Content-type: text/html
(you are going to build a static page)

i.
1.

Develop the program as if it were a CGI program using our CGISRVPGM2 service program
(you may use our command cgidev2/crtcgisrc to create an initial sample CGI source)

avoid reading and parsing the input string
(drop our cgidev2/crtcgisrc generated statement
/copy .../qrpglesrc,prolog1/2/3
)

i.

instead of sending the html buffer to the client with the instruction
callp wrtsection('*fini')
save it as an IFS stream file using the subrocedure WrtHtmlToStmf():
D Stmf s 512 varying
D inz('/web/dynapage1.html')
D CodePage s 10i 0 inz(819)
D rc s 10i 0
 * If "codepage" parameter omitted, code page is assigned by the
 * system
C if codepage > 0
C eval rc = WrtHtmlToStmf(Stmf:CodePage)
C else
C eval rc = WrtHtmlToStmf(Stmf)
C endif

ii.

Notes:
The filename portion in the "stream file" variable supports a maximum length of 245i.

2.

1 of 2 14/09/2011 23:55

CGIDEV2 Tutorial page 49

http://www.easy400.net/easy400/shwdowner1.htm

bytes.
Create the program with actgrp(*new).ii.
Subprocedure WrtHtmlToStmf() clears the output buffer before returning to the user
program. This is done to allow the user program to create more than one stream file
without overlaying previous output data.

iii.

Should you need instead to append the html buffer to an existing stream file, you must
use subprocedure AppHtmlToStmf():
D Stmf s 512 varying
D inz('/web/dynapage1.html')
D rc s 10i 0
C eval rc = AppHtmlToStmf(Stmf)

iv.

Example of a dynamic/static page:

Please browse the source of our example program. It would generate a page containing some
random integers. To run this program:

addlible cgidev21.
enter command
CGIDEV2/RANDOMNBRS STMF('/cgidev/randomnbrs.htm') CODEPAGE(819)

2.

Check out the generated static page.

Error codes.
If subprocedure wrtHtmlToStmf does not complete normally, it returns a non-zero error code (in field
"rc"). Error codes are documented in an IBM Infocenter separate page.

2 of 2 14/09/2011 23:55

CGIDEV2 Tutorial page 50

http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp01=cgidev2&cgiinp02=qrpglesrc&cgiinp03=randomnbrs
http://www.easy400.net/cgidev/randomnbrs.htm
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.htm?info/apis/unix14.htm

Introduction1.
User spaces2.
User space procedures3.
Sample program4.

1. Introduction

Non-persistent CGI are "stateless". In other words, the browser connects to the server, makes a
request (calls a CGI), receives the response, then disconnects from the server. On the next request
from the same browser, there is no guarantee that the same program has maintaned the state
(variables and record positioning) it was left with at the end of the previous request.

In such a stateless situation, the developer has to implement some "tricks" to restore some variables
on the next call to the CGI, such as

using hidden input fields in the HTML forms
writing and retrieving cookies

Sometimes, however, when designing complex transactions, these rather simple tricks may not be
sufficient to fulfill state requirements and a programmer would be tempted to use "persistent" CGI
instead. However, persistent CGI have their own problems.

In those cases, better methods for storing and retrieving state information are required.

2. User spaces

iSeries user spaces objects are ideal for this purpose:

Each user space can hold up to 16 MB of information
System APIs are provided to create a user space, change its attributes (including making it
automatically extendible, retrieve a pointer to it, etc.)
Once addressability to a user space (a pointer) has been established, one can map, using
based variables, many types of data into it, including data structures
Saving and restoring user state information can be accomplished as follow:

at the start of the transaction, create a uniquely named user space,
use based variable(s) to map the user's data into the space,
send an HTTP response to the user, including a hidden field containing the user space
name,
when the user makes a request using the form that contains the hidden user space
name, use that name to retrieve a pointer to the user space, thus restoring
addressability to the user space's contents using the same based variables that were
used to store them.

3. User space procedures

Subprocedure "CrtUsrSpc" - Create an User Space
It creates a randomly named, automatically extendible user space in a user-specified library.

1.

1 of 3 15/09/2011 00:25

CGIDEV2 Tutorial page 51

The user space's contents are initialized to all x'00's.

Parameters

User space library (input)
If the library not found, CrtUsrSpc sets the user space name to blanks and
MsgId to CPF9810
If the requestor does not have change authority to the library, CrtUsrSpc sets the
user space name to blanks and MsgId to CPF2144

Pointer to user space (output)
Set to null if the user space is not created

Message ID (output)
blank if no errors
else, message id of error

Optional Parameters

Public authority (input)
If not passed, it is set to *EXCLUDE

Text (input)
If not passed, it is set to 'Created by CGIDEV2' plus timestamp

Initial size (input)
If not passed, it is set to 12288

Extended attribute
If not passed, it is set to blanks

Returns

If successful
User space name

Otherwise
Blanks

Errors in system APIs

If any of the called system APIs fails, a message is forced into the CGIDEBUG file.

Example:
 * Input variables
D AnEntry s 40 varying
 * User space
D UsrSpcName s 10
D UsrSpcLib c 'CGIDEV2USP'
* Message ID for CrtUsrSpc
D MsgId s 7
* State related variables (user space contents)
D State ds based(StateP)
D Count 10i 0
D Entries 1000 varying
C eval UsrSpcName= CrtUsrSpc(
C UsrSpcLib : StateP : MsgID)

In this example, a user space is created in library CGIDEV2USP and its name is loaded into
variable "UsrSpcName".

Subprocedure "RtvUsrSpcPtr" - Retrieve Pointer to User Space

Parameters

User space name (input)
User space library (input)

Returns

2.

2 of 3 15/09/2011 00:25

CGIDEV2 Tutorial page 52

If successful
Pointer to the user space

Otherwise
Null pointer

Errors in system APIs

If any of the called system APIs fails, a message is forced into the CGIDEBUG file.

Example:
C eval StateP = RtvUsrSpcPtr(UsrSpcName:
C UsrSpcLib)
C if StateP = *null

C endif

In this example, the contents of the user space are made accessible via data structure "State".

To update the contents of the user space, one should just update the data structure "State":
C eval AnEntry = ZhbGetVar('AnEntry')
C if AnEntry <> ''
C eval Count = Count + 1
C eval Entries = Entries + '
' + AnEntry
C endif

4. Sample program
CGI program STATE demonstrates the use of user space to maintain program state information.
In this programs, the user may enter, one at a time, several inputs. The inputs are saved in a user
space. The user space contents are displayed to the user.

HTML source of this example
RPG source of this example
Run this example

3 of 3 15/09/2011 00:25

CGIDEV2 Tutorial page 53

http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp01=cgidev2&cgiinp02=htmlsrc&cgiinp03=state
http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp01=cgidev2&cgiinp02=qrpglesrc&cgiinp03=state
http://www.easy400.net/cgidev2p/state.cgi

Subprocedure randomString returns a string up to 1024 random characters. The caller controls the
number of characters returned, the contents and case of the first character, and the contents and
case of the remaining characters.
This procedure can be used for assigning temporary names for user spaces, stream files, file
members, etc.

Parameters:

Number of characters to return (0 - 1024)
If 0, a null string is returned.
If > 1024, 1024 characters are returned.
First character (if not passed, defaults to *mixedDigit)

*upperLetter (upper case letter only)
*lowerLetter (lower case letter only)
*mixedLetter (upper or lower case letter only)
*upperDigit (upper case letter or digit)
*lowerDigit (lower case letter or digit)
*mixedDigit (upper or lower case letter or digit)
*digit (digit only)

Remaining characters (if not passed, defaults to *mixedDigit)
same choices as first character

UpperChars - characters that are "upper case")
If not passed or has length = 0, defaults to 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

LowerChars - characters that are "lower case")
If not passed or has length = 0, defaults to 'abcdefghijklmnopqrstuvwzyz'

DigitChars - characters that are "digits")
If not passed or has length = 0, defaults to '0123456789'

For more information, see CGIDEV2/QRPGLESRC member XXXRANDOM.

Example:
D UsrSpcName s 10
C eval usrSpcName = RandomString(
C 10:'*UpperLetter':'*UpperDigit')

1 of 1 15/09/2011 00:54

CGIDEV2 Tutorial page 54

http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp01=cgidev2&cgiinp02=qrpglesrc&cgiinp03=xxxrandom

This subprocedure returns a random integer between two user-specified values. A random integer is
expecially useful to create a session ID ("handle") for persistent CGI programs.

Click here to see a live example of a CGI program using this subprocedure,
here to display the source of such sample program.

 /copy mysrclib/qrpglesrc,hspecs
 /copy mysrclib/qrpglesrc,hspecsbnd
 * Variables common to all CGIs
 /copy mysrclib/qrpglesrc,prototypeb
 /copy mysrclib/qrpglesrc,usec
 /copy mysrclib/qrpglesrc,variables3
 * Variables required by subprocedure "random"
DMyRandom S 10u 0
DMyLow S 10u 0
DMyHigh S 10u 0
 * ... etc. ...
 * Asks for a random integer
 * between 0 and 9, to be returned in variable "MyRandom"
C eval MyLow = 1
C eval MyHigh = 9
C eval MyRandom = random(MyLow:MyHigh)

1 of 1 15/09/2011 01:08

CGIDEV2 Tutorial page 55

http://www.easy400.net/cgidev2p/randomout.pgm
http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp01=cgidev2&cgiinp02=qrpglesrc&cgiinp03=randomout

A persistent CGI, each time it is called, must compute a unique session identifier to be used as a
handle to recall it back on the next user transaction. Click here to know more about persistent CGI
requirements.

A random integer generation function may help in computing such unique session ID. Click to see how
to compute a random integer.

Mel's service program includes also function getSessionID. This function returns a 15-character
string made of

the six characters of the job number
nine random digits.

 /copy mysrclib/qrpglesrc,hspecs
 /copy mysrclib/qrpglesrc,hspecsbnd
 * Variables common to all CGIs
 /copy mysrclib/qrpglesrc,prototypeb
 /copy mysrclib/qrpglesrc,usec
 /copy mysrclib/qrpglesrc,variables3
 * ... etc. ...
 * Example of computing a Session ID
C eval sessionid = getsessionid

1 of 1 15/09/2011 01:21

CGIDEV2 Tutorial page 56

Prepare your CGI libraries1.

Use command cgidev2/setcgilib to set up your source and production libraries for CGI programs:

Set lib.s for CGI development (SETCGILIB)
CGI source library Name
CGI production library *SRCLIB Name, *SRCLIB

CGI source library: The name of the library which will contain the sources of the CGI programs. This command creates the following
objects in this library:

Command, panel group, and program COMPILE to be used to regenerate your modules and programs any time you have to
change something in your external data structure

1.

the following source files, if missing
QDDSSRC
QRPGLESRC
QCLSRC
QCMDSRC
QPNLSRC

2.

Note that source file QRPGLESRC will contain the following members (to be copied into your CGI sources):
hspecs (H specifications for module compilation)
hspecsbnd (H specifications for binding, so that you do not need any longer to specify the bnddir keyword in your crtpgm
commands)
prototypeb (prototypes for requesting services from Mel's service program
usec (data structure for return codes from API's)
variables3 (variables common to CGI's)
prolog3 (get the input string sent from the remote browser)

Note that it is your responsibility to maintain CL program compile any time you develop a new CGI module or program.

CGI production library: The name of the library which will contain the CGI programs. If you specify *SRCLIB, the source library is
also the production library.
This command creates the following objects in this library:

Source file HTMLSRC for your html skeleton output members
Command CGIDEBUG, with file CGIDEBUG and data area CGIDEBUG, to let you debug your html inputs and outputs.

IFS directory: An IFS directory with the same name of the CGI production library is created.
Three subdirectories are also created:

/production_library/css for your .css files
/production_library/html for your .html files
/production_library/graphics for your graphical objects (icons, images, etc.)

HTTP directives: This command will also ask whether you want to generate original or Apache HTTP directives. If you did sign on
with a user profile that has *change authority over HTTP instance control files (QUSRSYS/QATMHINSTC, QUSRSYS/QATMHTTPC),
you will then be presented a list of HTTP instances (original or Apache) to choose from. Once you make a choice, the selected HTTP
instance is updated with the basic HTTP directives needed to make your static or dynamic pages supported. We give examples for
the two cases:

Original HTTP directives

Map /myprdlibh/* /QSYS.LIB/MYPRDLIB.LIB/HTMLSRC.FILE/*
Pass /QSYS.LIB/MYPRDLIB.LIB/HTMLSRC.FILE/*
Pass /myprdlib/*
Exec /myprdlibp/* /QSYS.LIB/MYPRDLIB.LIB/* %%EBCDIC/EBCDIC%%

where myprdlib is the library name you specify for the production library. These four directives work as
follow:
1-The Map directive allows you to specify the shortcut name /myprdlibh/ (instead of /QSYS.LIB
/MYPRDLIB.LIB/HTMLSRC.FILE/) in your html scripts (thus saving keystrokes and related errors)
2-The first Pass directive allows HTTP to access members (containing static pages) in your HTMLSRC
file
3-The second Pass directive allows HTTP to access files in a root directory named as your production

1 of 2 15/09/2011 01:40

CGIDEV2 Tutorial page 57

library: you could use such a directory to maintain images and static pages as well
4-The Exec directive allows CGIs in the production library to be executed. The
%%EBCDIC/EBCDIC%% parameter allows the correct execution of zhbGetInput procedure (high
performance procedure to read the input string from the remote browser).
Apache HTTP directives

AliasMatch /myprdlibh/(.*)\.htm /QSYS.LIB/MYPRDLIB.LIB/HTMLSRC.FILE/$1.mbr
Alias /myprdlibh/ /QSYS.LIB/MYPRDLIB.LIB/HTMLSRC.FILE/
Alias /myprdlib/ /myprdlib/
ScriptAliasMatch /myprdlibp(.*).pgm /qsys.lib/myprdlib.lib/$1.pgm
<Directory /QSYS.LIB/MYPRDLIB.LIB>
 AllowOverride None
 Options None
 order allow,deny
&%nbsp; allow from all
</Directory>
<Directory /myprdlib>
 AllowOverride None
 Options None
 order allow,deny
 allow from all
</Directory>

where myprdlib is the library name you specify for the production library. These directives work as
follow:
1-The first directive defines a short path myprdlibh/*.htm through which one may invoke static pages in
file MYPRDLIB/HTMLSRC using extension .htm
2-The second directive defines the short path myprdlibh which maps to MYPRDLIB/HTMLSRC
3-The third directives informs that IFS path "/myprdlib" can be used
4-The fourth directive allows execution of CGI programs in library MYPRDLIB. They must be invoked
through their pseudo-path myprdlibp
5-The first Directory group allows object in library MYPRDLIB to be accessed (basically: static pages in
MYPRDLIB/HTMLSRC and CGI programs in library MYPRDLIB)
6-The second Directory group allows IFS files in directory /myprdlib to be retrieved.

Create a sample CGI source2.

Use command cgidev2/crtcgisrc to create a sample ILE-RPG CGI source and the related HTML in source file HTMLSRC. The CGI is
able to manage both the input (via ZhbGetInput and ZhbGetVar) from the client and the output to the client. You may easily create a
module, create a CGI program, and run it. This will speed out your initial CGI developments.

Create sample CGI RPG source (CRTCGISRC)
ILE-RPG CGI source member . . . Name
CGI source library Name
CGI production library *SRCLIB Name, *SRCLIB

ILE-RPG CGI source member: The name of source member to be created in file QRPGLESRC in the source
library.
CGI source library: The name of the library which will contain the sources of the CGI programs.
CGI production library: The name of the library which will contain the CGI programs.

2 of 2 15/09/2011 01:40

CGIDEV2 Tutorial page 58

Table of Contents
1 - Introduction
2 - Apache HTTP Directives for persistent CGI programs
3 - Tips for developing output html skeleton members
4 - Tips for developing persistent CGI RPG programs
5 - Sample persistent CGI RPG programs

1 - Introduction

Before OS/400 Release V4R3, CGI programs could only be run as non-persistent.
A non-persistent CGI program is reloaded at every browser request.
Because of this, there is only one way a non-persistent CGI program can know the values its variables
had when it provided an html response to a client browser.
This is done by saving variable values in fields of the output html (usually "hidden" fields in an html
form), so that they are sent back to the program with the next browser request.

Starting with OS/400 Release V4R3, CGI programs can be run as persistent.
Persistent CGI is an extension to the CGI interface that allows a CGI program to remain active across
multiple browser requests and maintain a session with that browser client.
This allows

the program state to be maintained
files to be left open
long running database transactions to be committed or rolled back on end-user input.

The AS/400 CGI program must be created using a named activation group which allows the program
to remain active after returning to the server.
The CGI program notifies the server it wants to remain persistent using the "Accept-HTSession" CGI
header as the first header it returns in the output html. This header defines the session ID associated
with this instance of the CGI program, is taken off from the http server, and is not returned to the
browser.
Subsequent URL requests to this program must contain the session ID as the first parameter after the
program name.
The server uses this ID to route the request to that specific instance of the CGI program.
The CGI program should regenerate this session ID for each request.
Though not mandatory, it is strongly recommended that you use the Secure Socket Layer (SSL) for
persistent and secure business transaction processing.

2 - Apache HTTP Directives for persistent CGI programs

There are three Apache HTTP directives for persistent CGI jobs.

MaxPersistentCGI - Maximum number of persistent CGI jobs
Use this directive to set the maximum number of persistent CGI jobs that you want to have
active at one time. The default is 50.

Example

MaxPersistentCGI 10

1.

1 of 3 15/09/2011 11:40

CGIDEV2 Tutorial page 59

PersistentCGITimeout - Default timeout value for persistent CGI jobs
This directive specifies the number of seconds that your server waits for a client response
before ending a persistent CGI session. The CGI program can override the value that you
specify on a request-by-request basis. The default timeout value is 300 seconds.

Example

PersistentCGITimeout 120

2.

MaxPersistentCGITimeout - Maximum timeout value for persistent CGI jobs
This is the maximum number of seconds that a CGI program can use when overriding the
PersistentCGITimeout directive. The default timeout value is 1800 seconds.

Example

MaxPersistentCGITimeout 3600

3.

Notes on persistent CGI running under Apache

Persistent CGI running under Apache must use the POST method, not the GET methodi.
The ScriptAliasMatch directive for executing persistent CGI programs MUST HAVE the
following format
ScriptAliasMatch /cgidev2p/(.*) /qsys.lib/cgidev2.lib/$1
The following format WOULD NOT WORK:
ScriptAliasMatch /cgidev2p/(.*).pgm /qsys.lib/cgidev2.lib/$1.pgm

ii.

3 - Tips for developing output html skeleton members
(when using Mel's service program technique)

Accept-HTSession Header
The first html section issued by your program should start as follow

/$section_name
Accept-HTSession:/%HANDLE%/
Content-type: text/html

<HTML>
where /%HANDLE%/ will be substituted with the "unique session ID" computed by your program
(see the next topic).
The "Accept-HTSession" header will not be sent to the client browser. It will be detected and
taken off by the http server. The "unique session ID" will be associated with your program
instance, so that the next request from the client browser mentioning it will cause your program
instance be re-activated.

1.

HTTimeout Header
This header defines the amount of time, in minutes, that a CGI program wants to wait for a
subsequent request.
If not specified, the value specified on the HTTP PersistentCGITimeout directive is used.
If specified, it overrides the HTTP PersistentCGITimeout directive,
but the server will not wait longer than the time specified on the HTTP
MaxPersistentCGITimeout directive.
This allows individual CGI programs to give users more time to respond to lengthy forms or
explanations. However, it still gives the server ultimate control over the maximum time to wait.

Example

HTTimeout:50
This header must be preceded by an Accept-HTSession header; if not, it is ignored.
If you omit this header, the default time-out value for the server is used.

2.

To enable the client browser to re-activate your program instance, your html URL link should be
specified in the following way

/path/cgi_name/handle/rest_of_path
where

3.

2 of 3 15/09/2011 11:40

CGIDEV2 Tutorial page 60

path is the path to your CGI persistent program
cgi_name is the name of your program followed by .pgm
handle is the "unique session ID" you already put in the "Accept-HTSession" header
rest_of_path is the parameter string (if any) expected by your program

Examples:
<FORM METHOD="POST" ACTION="/path/mypgm.pgm/ /%HANDLE%/>
<INPUT TYPE="HIDDEN" NAME="action" VALUE="go">
 . . .
</FORM>

 . . .

4 - Tips for developing persistent CGI RPG programs

Also a CGI persistent program, after returning the ouput html to the browser should return to
the server. This is different from a traditional non CGI program, where the program sits after an
EXFMT instruction.

do not set on the LR indicator, when you want the program to remain active for further
requests
set on the LR indicator when you want the program be no longer active. In this case,
make sure the browser receives some html response, otherwise the end user will wait
until a script-timeout is issued from the http server.

1.

When receiving control from the http server, the persistent CGI program should test some
variable of its own to establish the state it was left in.

2.

Have the program itself regenerating every time a new session ID (also called "handle") to be
inserted in two points of the output html:

the "Accept-HTSession" header
the URL to call again that program.

In building a new session ID, you may use a random number obtained through Mel's service
program random subprocedure.

3.

When creating a persistent CGI program, be sure to specify a named activation group in the
parameter ACTGRP. As an example, the name of the activation group could be the same for all
CGIs in an application.

4.

5 - Sample persistent CGI RPG programs

Mel Rothman's demo Giovanni Perotti's demo

 What day of the week?
It computes its Session ID ("Handle") using the
getSessionID subprocedure.

View
the bootstrap HTML
the externally defined HTML source
the RPG source of the CGI

Sample persistent RPG CGI program
It computes its Session ID ("Handle") just using
the random subprocedure.

View
the externally defined HTML source
the RPG source of the CGI

3 of 3 15/09/2011 11:40

CGIDEV2 Tutorial page 61

http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp01=cgidev2&cgiinp02=htmlsrc&cgiinp03=persist1
http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp01=cgidev2&cgiinp02=htmlsrc&cgiinp03=persist2
http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp01=cgidev2&cgiinp02=qrpglesrc&cgiinp03=persist
http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp01=cgidev2&cgiinp02=demohtml&cgiinp03=persist01
http://www.easy400.net/cgidev2p/dspsrc.pgm?cgiinp01=cgidev2&cgiinp02=qrpglesrc&cgiinp03=persist01

What to do when the time comes to debug a CGI program

That time will come soon, just after starting.

CGI Program failed

is waiting for you.
So, better be prepared.

Note - In this page it is assumed that you run the Apache HTTP server.

1- Setup

Whenever a program check is met, Apache HTTP server jobs bump out, and all the diagnostics are
then in their joblogs. So, first of all, HTTP server jobs must have a readable joblog. This is how you do
it:

chgjobd qhttpsvr/qzhbhttp log(4 00 *seclvl) inqmsgrpy(*dft)1.
endtcpsvr *http2.
strtcpsvr *http3.

Second, you must change the "script time-out" value in your http directives, by specifying a time value
high enough to let you complete your debugs without having the server job terminating because of an
excessive wait time on the server response.

edtf '/www/http_instance_name/conf/httpd.conf'1.
add or change the following directive
TimeOut nn
by specifying af least 1800 (30 minutes) for nn .

2.

 endtcpsvr *http3.
 strtcpsvr *http4.

If the HTTP server job does not bump out and you want to debug a CGI program of yours, you must
first find out which HTTP job is going to serve your request.
To find out the HTTP job servicing your request

wrkactjob sbs(qhttpsvr) job(instance_name)1.
press F10 several times to reset counts2.
run any HTTP request that would not fail3.
press F5 to refresh the counts4.
the HTTP job servicing your request is the CGI one displaying some CPU time.5.

2- HTTP instance configuration

If your browser displays error 404, that may just mean that your HTTP directives are not1.

1 of 3 15/09/2011 13:09

CGIDEV2 Tutorial page 62

working
If you have installed library cgidev2, clear the cash of your web browser and try to run the
following:

http://.../cgidev2o/hello.htm
(replace ... with the TCP address of your AS/400)

If you get no response, but an Error 400 message, it may mean that your HTTP server
is not serving your request. Some of the causes:

Your HTTP server is not active; you can check it by entering command
wrkactjob sbs(qhttpsvr)
Your HTTP server is active, but some other active HTTP server is locking port 80
for its own exclusive use. This happens for instance when you also run DOMINO.
You may then try to change the port of your HTTP configuration in the following
way:

Enter command
edtf '/www/http_instance_name/conf/httpd.conf'
to edit the HTTP server instance directives

1.

Look for a Listen directive.2.
Change the port number on the Listen directive.
For instance, instead of port 80, assign port 7777.

3.

Re-start the HTTP server instance4.
Re-try the URL by entering
 http://...:7777/cgidev2o/hello.htm

5.

2.

If you get Error 500 in running
http://.../cgidev2o/hello.htm

do the following:
make sure that library CGIDEV2 and program CGIDEV2/HELLO1 are authorized to the
*public for *use
make sure that the configuration directives of your HTTP server contain the directives
needed to run CGIDEV2, and that this HTTP server was re-started after installing such
directives (to install CGIDEV2 HTTP directives, run command command
CGIDEV2/HTTPCFG)
make sure you installed the last available PTF Cumulative for product 57xxDG1 (IBM
HTTP Server for iSeries)

3.

3- Error 500 trivial cases

Error 500 is raised in four cases:

The mandatory HTTP header is missing.
The HTTP headers are statements at the beginning of the output generated from a CGI for
the browser.
The fist mandatory HTTP header must be:
Content type: ...
In absense of such HTTP header, you get ERROR 500 from Apache. Another common HTTP
header is
Expires: 0

1.

The mandatory HTTP headers separator is missing.
The HTTP headers must end with a sequence of two Carriage-Return-Line-Feed (CRLF).
This is implemented by adding an empty line after the last HTTP header.
In absense of such a separator, you get ERROR 500 from Apache.

2.

The output buffer is not sent to the browser
The CGI program returns without sending the output buffer via the statement
callp wrtsection('*fini')

3.

The CGI program faces a program exception and is terminated. This is the topic
discussed hereafter.

4.

4- Error 500 non trivial case

If the HTTP instance job servicing your CGI request was terminated due to a program exception, you
should first look at its joblog (output queue QEZJOBLOG).

2 of 3 15/09/2011 13:09

CGIDEV2 Tutorial page 63

In many cases, error messages provide enough information to enable program correction.
For more complex cases, you need to debug your CGI program.

To perform debug, you must have compiled your ILE modules with the option
DBGVIEW(*SOURCE) or DBGVIEW(*LIST)

If you have done so,

strsrvjob the http server job which you expect to process your next CGI request1.
strdbg your_CGI_program updprod(*yes)
Note- To be quicker, you may use command EDBG (Enhanced Debug) available with
CGIDEV2 (use F4 to prompt parameters).

2.

Some basics, when the source of the initial module is displayed
on the command line,
F string
to find a string
F16 to find next
move a cursor to a source line and press F6 to add a breakpoint

3.

Rerun your CGI program.
Hopefully it will stop at some breakpoint of yours, you may tell from your debug session

4.

More hints on debug
position the cursor on a variable and press F11 to display its value
you can do the same on the command line by entering
eval variable_name
if you want to display the value of a variable in hexadecimal format, on the command
line enter
eval variable_name:x
to change the value of a variable, on the command line enter

eval variable_name = 'value'
if it is a character variable
eval variable_name = value
if it is a numeric variable

to execute one step of coding, press F10
to resume execution till the next breakpoint, press F12
if your module calls another module, and you want to debug this latter one

add a breakpoint on the call statement
when execution stops on this statement, press F22 to display and add
breakpoints to this latter module

5.

By sure you will become the most proficient debugger in your neighbourhood!

3 of 3 15/09/2011 13:09

CGIDEV2 Tutorial page 64

	CGIDEV2 Tutorial
	Main functions
	Read input from client browser
	Map input string into program variables
	Handle multiple occurrences of an input variable
	Externally defined HTML
	How to provide HTML responses using externally defined HTML

	Other functions
	Handle cookies
	Handle HTML messages
	Manage page counts
	Retrieve environment variables
	Other environment variable functions
	Timing functions
	IFS subprocedures
	Upload PC files
	CGI debug file
	Debugging functions

	Coding facilities
	Data conversion functions
	Execute a command
	Override a file

	Dynastatic pages
	Write HTML to a stream file

	Program state support
	Using user spaces
	Create a random string

	Persistent CGI support
	Generate a random integer
	Assign a session ID

	Appendixes
	Appendix A - Preparing libraries for CGI development
	Appendix B - About persistent CGI
	Appendix C - CGI debugging tips

